首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rotational spectrum of S4 has been observed for the first time in an electrical discharge through sulfur vapor. Two techniques have been used: Fourier transform microwave spectroscopy and long-path millimeter-wave absorption spectroscopy. Small, but systematic shifts of the measured transition frequencies of the normal isotopic species indicate that S4 has C2v symmetry but with a low-lying transition state of D2h symmetry, yielding interchange tunneling at 14.1(2) kHz in its ground vibrational state. From the rotational constants of the normal and the single 34S isotopic species, an experimental (r0) structure has been derived: S4 is a singlet planar trapezoid with a terminal bond length of 1.899(7) A, a central bond of 2.173(32) A, and an S-S-S angle of 103.9(8) degrees. Like thiozone (S3), S4 is a candidate for detection in the atmosphere of the Jovian moon Io and in other astronomical sources.  相似文献   

2.
Dihydrogen trioxide, HOOOH, which is a species with fundamental importance for understanding the chain formation ability of the oxygen atom, was detected in a supersonic jet by a Fourier transform microwave spectrometer with a pulsed discharge nozzle, together with double resonance and triple resonance techniques. Its precise molecular structure was determined from the experimentally determined rotational constants of HOOOH and its isotopomer, DOOOD. Many of the microwave and millimeter wave transitions can now be accurately predicted, which could be facilitated for remote sensing of the molecule to elucidate its roles in various chemical processes.  相似文献   

3.
The rotational spectrum of the weakly bound complex (PH3, HCN) in its vibrational ground state has been observed by the technique of pulsed-nozzle, Fourier-transform microwave spectroscopy. The isotopic species (PH3, HC14N), (PH3, DC14N) and (PH3, HC15N) exhibit spectra of the symmetric-top type from which accurate values of the spectroscopic constants B0, DJ, DJK and Xaa(14N) have been determined. For (PH3, HC14N) the appropriate values are: B0 = 1553.3709(1) MHz, DJ = 3.306(3) kHz, DJK = 256.9(6) kHz and Xaa(14N) = ?4.3591(14) MHz. The geometry of the complex established from the spectroscopic constants is one of C3v symmetry at equilibrium, with the HCN molecule lying along the C3 axis of PH3 and oriented so that it forms a hydrogen bond to the P atom. The effective distance from P to the C nucleus is r(P ? C) = 3.913 Å.  相似文献   

4.
The microwave rotational spectrum of propargyl benzene has been studied and its stable conformation has coplanar carbon atoms. This planar structure is confirmed independently by the value of its Pcc second moment consistent with only a pair of H atoms out of the plane, by its rotational spectrum obeying a- and b-type and not c-type selection rules, by its display of spectra of nine rather than six distinguishable monosubstituted 13C isotopomers, by the absence of tunneling splittings, and by the insensitivity of Pcc to 13C isotopic substitution. This conformation is also observed in its isoelectronic analogue, benzyl cyanide. The structure is stabilized by an effective hydrogen bond between an ortho C-H and the π electrons of the triple bond.  相似文献   

5.
A group-theoretical scheme - generally valid for planar CS asymetric tops - is described to predict alterations in the rotational structure of infrared bands of HNCO caused by Coriolis interactions among a′ and a″ vibrations. Through inversion parities and perturbation mixing rules it is shown how the parallel component arises in the ν6(a″) band, and that no extra features are expected for the in-plane modes. The Coriolis-triad ν456 is approximately treated as two separate pairs and the K-dependence of induced parallel rotational transitions is estimated.  相似文献   

6.
Unsaturated transition metal carbonyls are important in processes such as organometallic synthesis, homogeneous catalysis, and photochemical decomposition of organometallics. In particular, a metal monocarbonyl offers a zeroth-order model for interpreting the chemisorption of a CO molecule on a metal surface in catalytic activation processes. Quite large numbers of theoretical papers have appeared which predict spectroscopic and structural properties of transition metal carbonyls. The nickel monocarbonyl NiCO has been one of the metal carbonyls most extensively studied by the theoretical calculations. At least 50 theoretical studies have been published on this simplest transition metal carbonyl up to the present time. However, experimental evidence of NiCO is much more sparse than theoretical predictions, and the actual structure of NiCO has never been determined by any experimental methods. This Communication reports the first preparation of free nickel monocarbonyl and observation of its rotational transitions. The NiCO molecule was generated by the sputtering reaction of a Ni cathode in the presence of CO. The accurate bond lengths of Ni-C and C-O were experimentally determined from isotopic data and were compared with the theoretical predictions for the first time.  相似文献   

7.
The rotational spectrum of the molecular negative ion CN(-) has been detected in the laboratory at high resolution. The four lowest transitions were observed in a low pressure glow discharge through C(2)N(2) and N(2). Conclusive evidence for the identification was provided by well-resolved nitrogen quadrupole hyperfine structure in the lowest rotational transition, and a measurable Doppler shift owing to ion drift in the positive column of the discharge. Three spectroscopic constants (B, D, and eQq) reproduce the observed spectrum to within one part in 10(7) or better, allowing the entire rotational spectrum to be calculated well into the far IR to within 1 km s(-1) in equivalent radial velocity. CN(-) is an excellent candidate for astronomical detection, because the CN radical is observed in many galactic molecular sources, the electron binding energy of CN(-) is large, and calculations indicate CN(-) should be detectable in IRC+10216-the carbon star where C(6)H(-) has recently been observed. The fairly high concentration of CN(-) in the discharge implies that other molecular anions containing the nitrile group may be within reach.  相似文献   

8.
Rotational spectra have been assigned for the 82Kr, 83Kr, 84Kr, and 86Kr isotopic species of the KrHF and KrDF van der Waals molecules by using pulsed microwave Fourier transform spectroscopy in a Fabry—Perot cavity with a pulsed supersonic nozzle molecular source. The rotational, centrifugal distortion, nuclear spin—spin, and nuclear quadrupole coupling constants are used to determine the structure and obtain intramolecular potential binding information. The 83Kr nuclear quadrupole coupling constants are 10.28 ± 0.08 MHz and 13.83 ± 0.13 MHz for KrHF and KrDF respectively. The electric field gradient at the krypton nucleus is calculated from the coupling constant and the known nuclear quadrupole moment and explained by Sternheimer shielding and formation of the van der Waals bond. There is a negligible charge transfer in the KrHF bond.  相似文献   

9.
《Chemical physics letters》1987,136(5):418-422
The PPP CI molecular-orbital theory for three-dimensional systems has been applied to study the UV spectrum of the truncated icosahedral C60 molecule. We have found that only the one-electron transitions to T1u symmetry (4.2270,4.7498 and 6.5182 eV) have oscillator strengths different from zero. Using a bond-order-bond-length relation in SCF iteration connected to the PPP method, we have obtained two kinds of bond lengths r1 = 1.439 Å and r2 = 1.398 Å, which correspond to the edges of the regular pentagon and the edge of a hexagon not lying on a pentagon.  相似文献   

10.
Propynyl isocyanide, CH3C2NC, has been prepared by vacuum pyrolysis of pentacarbonyl-(1,2-dichloropropenyl isocyanide) chromium, (CO)5Cr–CN–C(Cl)=C(Cl)CH3, and its ground state millimeter and microwave spectrum has been observed for the first time. rs structural parameters of this molecule with a C3v symmetry could be obtained from the rotational constants of several isotopomers: r(C1–C2)=1.456(2) Å, r(C2–C3)=1.206(2) Å, r(C3–N)= 1.316(2) Å, r(N–C4)= 1.175(2) Å, r(H–C1)= 1.090(1) Å, >HCC=110.7(4)°. The nitrogen quadrupole coupling constant has been determined to be 878(2) kHz and measurements of the Stark effect allowed to obtain an electric dipole moment of 4.19(3) Debye. The results fit well into a series of related compounds and are in good agreement with data from ab initio calculations.  相似文献   

11.
The rotational spectrum of bromoacetyl chloride, BrCH2COCl, has been assigned using a pulsed molecular beam Fourier transform microwave spectrometer. It has been possible to determine the rotational and quartic centrifugal distortion constants of the energetically favoured conformer (anti-periplanar) as well as the complete bromine and chlorine quadrupole coupling tensors including their off diagonal elements for the following isotopomers: 79BrCH2CO35Cl, 81BrCH2CO35Cl, 79BrCH2CO37Cl, and 81BrCH2CO37Cl. Experimental results are supported by quantum chemical calculations.  相似文献   

12.
A novel method has been developed to evaluate accurate rotational constants from the microwave spectrum of the unstable molecule bromine isocyanate, using perturbations in nuclear quadrupole hyperfine structure. It has been applied to this prolate near-symmetric rotor to determine Av and xab accurately, entirely from a-type R branches. The method has been made possible by the development of a special computer program for global léast-squares fitting to rotational and centrifugal distortion constants, along with all components of the Br nuclear quadrupole coupling tensor.  相似文献   

13.
The pure rotational spectrum of NaCH3 and NaCD3 in their states has been recorded using millimeter/sub-mm direct absorption techniques in the 300–510 GHz range. This work is the first gas-phase detection of sodium monomethyl, which was created by the reaction of sodium vapor with tetramethyl tin. Ten rotational transitions were measured for NaCH3 for the K=0 through K=5 components and, in select cases, up to K=10, and four transitions (K=0–7) for NaCD3. Rotational constants have been accurately determined for both isotopomers, suggesting a sodium–carbon bond length of 2.30 Å and an H–C–H bond angle of 107.3°.  相似文献   

14.
The rotational spectrum of cyclopentadienylallylnickel, C3H5NiC5H5, has been studied using a pulsed molecular beam Fourier transform microwave spectrometer. Twelve a-type transitions were analyzed to obtain rotational and centrifugal distortion constants for the parent C3H558NiC5H5 complex. The measured rotational constant A = 3107.603(93) MHz is about 160.0 MHz larger than the predicted DFT value, providing evidence for possible fluxional motion in the complex. The large distortion constants, on the order of 100 kHz, provide further evidence for fluxional motion. The experimental constants B = 1302.38(22) and C = 1276.40(15) MHz are in good agreement with the DFT calculated values and confirm the η3-bonding of the allyl ligand to the Ni–C5H5 moiety. DFT calculations provide a V5 barrier for internal rotation about the Ni–C5H5 axis of 53 cm−1, with the lowest energy conformation having the central allyl c-atom eclipsed with respect to two C5H5 carbon atoms. Several additional rotational lines, possibly those of an exited torsional state, were observed but not assigned.  相似文献   

15.
The ground-state rotational spectra of 24 isotopomers of ethynylstannane have been observed by pulsed-jet, Fourier-transform microwave spectroscopy. The spectroscopic constants, B(0,)D(J) and D(JK) are reported for symmetric-top isotopomers H(3)(n)Sn(12)C(12)CH, where n = 116, 117, 118, 119, 120, 122 and 124, D(3)(n)Sn(12)C(12)CH, where n = 116, 118, 120, 122 and 124, H(3)(n)Sn(13)C(12) CH and H(3)(n)Sn(12)C(13)CH , where n = 116,118 and 120, and H(3)(n)Sn(12)C(12)CD, where n = 116, 118 and 120. In addition, the values of A(0), B(0), C(0), Delta(J) and Delta(JK) were obtained for the three asymmetric-top isotopomers DH(2)(n)Sn(12)C(12)CH, where n = 116, 118 and 120. Hyperfine structure was resolved and assigned in the transitions of the isotopomers H(3)(n)SnCCD, where n = 116, 118 and 120, and in the isotopomers H(3)(117)SnCCH and H(3)(119)SnCCH. In the former group, the hyperfine structure arises from D nuclear quadrupole coupling while in the latter group its origin lies in the spin-rotation coupling of the I = 1/2 Sn nuclear spin to the rotational motion. For these isotopomers, D nuclear quadrupole and spin-rotation coupling constants are determined where appropriate. The rotational constants obtained for the 24 isotopomers of H(3)SnCCH were used to obtain the following types of molecular geometry for ethynylstannane: r(0), r(s), and r(m).  相似文献   

16.
The rotational spectrum of the NiS radical in the X(3)Sigma(-) state was observed by employing a source-modulation microwave spectrometer. The NiS radical was generated in a free space cell by a dc glow discharge in H(2)S diluted with Ar. The nickel atoms were supplied by the sputtering reaction from a nickel cathode. Rotational transitions with J = 11-10 to 25-24 were measured in the region between 135 and 314 GHz. Rotational, centrifugal distortion and several fine-structure constants were determined by a least-squares analysis. Other spectroscopic parameters such as dissociation energy, vibrational wavenumber and equilibrium bond length were also derived from the determined molecular constants. Excitation energies of the lowest (3)Pi and (1)Sigma(+) states were estimated from the fine-structure constants, lambda and gamma.  相似文献   

17.
The pure rotational Raman spectrum of C61H32H3 has been recorded photographically at 288 K and analysed to yield values of the rotational constants B0 and DJ. In combination with the B0 values for C61H6 and C62H6 the bond lengths r(C—H) and r0(C—;C) were calculated; r0(C—H) = 108.60 ± 0.04 pm; r0(C—C) = 139.660 ± 0.008 pm.  相似文献   

18.
The rotational spectrum of CF in its ground electronic state was studied around 1000 GHz, using a tunable far-infrared source. Seven transitions were observed originating from the 2Π1/2 and 2Π3/2 substates. The hyperfine and Λ-type splittings were resolved. The results were combined with gas-phase electron resonance and infrared diode laser spectra to determine all pertinent molecular constants.  相似文献   

19.
《Chemical physics letters》1985,118(3):334-339
The rotational spectrum of tertiary butyl cyanide was studied in the frequency region up to 330 GHz at medium resolution using free-running, frequency-modulated backward wave oscillator sources. For the highest J transitions recorded, the K structure in the ground state was continuously observable up to well beyond K = 40. More than 100 ground-state transition frequencies have been measured, leading to accurate values for the rotational constant and quartic and sextic centrifugal distortion constants.  相似文献   

20.
Millimeter wave rotational spectroscopy and ab initio calculations are used to explore the potential energy surface of LiOH and LiOD with particular emphasis on the bending states and bending potential. New measurements extend the observed rotational lines to J=7<--6 for LiOH and J=8<--7 for LiOD for all bending vibrational states up to (03(3)0). Rotation-vibration energy levels, geometric expectation values, and dipole moments are calculated using extensive high-level ab initio three-dimensional potential energy and dipole moment surfaces. Agreement between calculation and experiment is superb, with predicted Bv values typically within 0.3%, D values within 0.2%, ql values within 0.7%, and dipole moments within 0.9% of experiment. Shifts in Bv values with vibration and isotopic substitution are also well predicted. A combined theoretical and experimental structural analysis establishes the linear equilibrium structure with re(Li-O)=1.5776(4) A and re(O-H)=0.949(2) A. Predicted fundamental vibrational frequencies are v1=923.2, v2=318.3, and v3=3829.8 cm(-1) for LiOH and v1=912.9, v2=245.8, and v3=2824.2 cm(-1) for LiOD. The molecule is extremely nonrigid with respect to angular deformation; the calculated deviation from linearity for the vibrationally averaged structure is 19.0 degrees in the (000) state and 41.9 degrees in the (03(3)0) state. The calculation not only predicts, in agreement with previous work [P. R. Bunker, P. Jensen, A. Karpfen, and H. Lischka, J. Mol. Spectrosc. 135, 89 (1989)], a change from a linear to a bent minimum energy configuration at elongated Li-O distances, but also a similar change from linear to bent at elongated O-H distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号