首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The room-temperature adsorption and thermal evolution of cis-dichloroethylene (DCE) and perchloroethylene (PCE) on Si(100)2 x 1 have been studied by X-ray photoelectron spectroscopy and temperature programmed desorption (TPD) mass spectrometry. Unlike ethylene that is found to adsorb on Si(100)2 x 1 through a [2+2] cycloaddition reaction, cis-DCE and PCE appear to dechlorinate upon adsorption on the 2 x 1 surface through an insertion reaction preserving the C=C bond. Our C 1s XPS spectra are consistent with the existence of mono-sigma-bonded and di-sigma bonded dechlorinated adstructures for both cis-DCE and PCE. The presence of the XPS C 1s feature at 283.9 eV, characteristic of the (=C<(Si)(Si)) component, supports the formation of a unique tetra-sigma-bonded C(2) dimer (i.e., by full dechlorination) for PCE, which is found to be stable to 800 K. In marked contrast to PCE for which no organic desorption fragments are observed, m/z 26 TPD features at 590 and 750 K have been observed for cis-DCE. These features could be attributed to the formation of acetylene resulting from Cl beta-elimination of 2-chlorovinyl adspecies and to direct desorption of vinylene, respectively. Further annealing the cis-DCE and PCE samples to above 800 K produces SiC and/or carbon clusters. The TPD data also show HCl evolution over 810-850 K for both cis-DCE and PCE, the latter of which also exhibits an additional SiCl(2) evolution above 850 K. The present work illustrates that the insertion mechanism could be quite common in the surface chemistry of chlorinated ethylenes on the 2 x 1 surface.  相似文献   

2.
Thermal and ion-induced reactions of 1,1-difluoroethylene (1,1-C2H2F2 or iso-DFE) on Si(111)7 x 7 and vitreous SiO2 surfaces have been investigated by vibrational electron energy loss spectroscopy and thermal desorption spectrometry. Like ethylene, iso-DFE predominantly chemisorbs via a [2 + 2] cycloaddition mechanism onto the 7 x 7 surface as a di-sigma-bonded difluoroethane-1,2-diyl adstructure, which undergoes H abstraction and defluorination, producing hydrocarbon fragments and SiF(x) (x = 1-3) upon annealing to >700 K. Ion irradiation of Si(111)7 x 7 in iso-DFE at 50 eV impact energy appears to substantially enhance the production of hydrocarbon fragments and SiF(x)(), leading to stronger SiF4 desorption products over an extended temperature range (400-900 K). The observed SiC and SiF(x) produced on the 7 x 7 surface by ion irradiation in iso-DFE are found to be similar to those obtained by ion irradiation in the fluoromethane homologues, CF4 and CH2F2. The production of higher relative concentrations for the larger SiF(x) and C2-containing fragments is evidently favored on the 7 x 7 surface. On a vitreous SiO2 surface, ion irradiation in iso-DFE, unlike that in CF4 and CH2F2, appears to produce less SiF(x) than that on the 7 x 7 surface, which indicates that surface O does not interact strongly with the C2-containing fragments. The presence or absence of a C=C bond and the relative F-to-C ratio of the sputtering gas could therefore produce important effects on the resulting surface products obtained by low-energy ion irradiation.  相似文献   

3.
The adsorption and thermal decomposition of ketene on Si(l 11)-7 × 7 were investigated using various surface analysis techniques. When the surface was exposed to ketene at 120 K, two CO stretching modes at 220 and 273 meV appeared in HREELS, corresponding to two adsorbed ketene states. After the sample was annealed at ?250 K, the 273 and the 80 meV peaks vanished, indicating the disappearance of one of the adsorption states by partial desorption of the adsorbate. In a corresponding TPD measurement, a desorption peak for ketene species was noted at 220 K. Annealing the sample at 450 K caused the decomposition of the adsorbate, producing CHx and O adspecies. Further annealing of the surface at higher temperatures resulted in the breaking of the CH bond, the desorption of H and O species and the formation of Si carbide. The desorption of H at 800 K was confirmed by the appearance of the D2 (m/e = 4) TPD peak at that temperature when CD2CO was used instead of CH2CO.  相似文献   

4.
The reaction of N,N,N',N"-pentamethyldiethylenetriamine (pmdeta) with HSiCl3 and H2SiCl2 in dry CH2Cl2 affords the novel cationic intermolecular hexacoordinate silanes [pmdeta.HSiCl2]+Cl- (1) and [pmdeta.H2SiCl]+Cl(2), respectively. The addition of N,N,N',N',N"-pentaethyldiethylenetriamine (pedeta) to a solution of HSiCl3 in dry CH2Cl2 gives the redistribution product formulated as the salt [pedeta.H2SiCl]+Cl- (3) and SiC4. Treatment of H2SiCl2 with pedeta and N,N,N',N',N",N"'-hexamethyltriethylenetetramine (hmteta) produces [pedeta.H2SiCl]+Cl(3) and [hmteta.H2SiCl]+C1- (HCl) (4). In 4, the fourth amine is not bonded to silicon. Reactions of 2, 3, and 4 with NaBPh4 give the ion exchange products [pmdeta.H2SiC1]+BPh4- (5), [pedeta.H2SiCl]+BPh4- (6), and [hmteta.H2SiCl]+BPh4- (HCl) (7), respectively. The salts 1, 5, 6, and 7 were characterized by single-crystal X-ray diffraction analysis. Most notable is that the cations in 1, 5, 6, and 7 are slightly distorted octahedra in which two hydrogen atoms are at the trans positions. The reactions of 3 with tmeda and pmdeta afford the intermolecular ligand exchange products tmeda.H2SiCl2 and 2, respectively.  相似文献   

5.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

6.
Photoelectron spectroscopy with synchrotron radiation and low energy electron diffraction (LEED) were used in order to study the MgCl(2)Si(111) system. At submonolayer coverage of MgCl(2), a new LEED pattern was observed corresponding to a (sqr rt 3 x sqr rt 3)R30 degrees overlayer superimposed on the underlying reconstructed Si(111)7 x 7. The surface species at this stage are mainly molecular MgCl(2) and MgCl(x) (x<2) or MgO(x)Cl(y) attached to the Si substrate through Cl bridges coexisting with monodentate SiCl. The interfacial interaction becomes more pronounced when the submonolayer coverage is obtained by annealing thicker MgCl(2) layers, whereby desorption of molecular MgCl(2) is observed leaving on the nonreconstructed silicon surface an approximately 0.2 ML thick MgCl(x) layer which again forms the (sqr rt 3 x sqr rt 3 )R30 degrees superstructure.  相似文献   

7.
Using X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD), the room temperature (RT) adsorption and thermal evolution of monochlorobenzene (MCB) and 1,3-dichlorobenzene (1,3-DCB) on Si(100)2x1 have been investigated and compared with that of 1,2-dichlorobenzene (1,2-DCB) reported previously. Like 1,2-DCB, the C 1s features observed at 284.6 (C(1)) and 286.0 eV (C(2)) for both MCB and 1,3-DCB could be attributed to the C-H and C-Cl bonds, respectively. The C(1)/C(2) intensity ratios for MCB (5.0) and 1,3-DCB (2.0) are found to follow the stoichiometric ratios of the C-H to C-Cl bonds for MCB and 1,3-DCB, respectively, indicating that both MCB and 1,3-DCB adsorb on Si(100)2x1 molecularly with negligible C-Cl dissociation at RT, in marked contrast to the partial C-Cl dissociation found for 1,2-DCB. Unlike 1,2-DCB with two discernible Cl 2s features at 270.3 and 271.2 eV, a single Cl 2s feature at 271.2 eV is observed for MCB and 1,3-DCB, in accord with the single local chemical environment for Cl. The TPD results show that MCB undergoes molecular desorption exclusively, similar to that found for benzene. Both molecular desorption and recombinative HCl desorption are found for 1,3-DCB, similar to that for 1,2-DCB. Despite the different Cl contents and relative Cl locations on the benzene ring, both MCB and 1,3-DCB exhibit RT adsorption behavior remarkably similar to that of benzene. To explain the C-Cl dissociation observed for 1,2-DCB, we propose a possible transition state involving the Cl atoms located at more physically compatible positions with the surface Si dimers in order to facilitate the conversion of 1,2-DCB (preferentially over 1,3-DCB) to dissociated products at RT. However, the thermal evolution of 1,3-DCB is closer to that of 1,2-DCB than that of MCB and benzene. The breakage of C-Cl bonds is found to occur at a relatively low temperature of 425 K, which suggests a relatively low activation barrier for the dechlorination of 1,3-DCB adspecies. Calculated energetics for 1,4-DCB on Si(100)2x1 shows that double dechlorination is not as favorable a process as those for 1,2-DCB and 1,3-DCB.  相似文献   

8.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

9.
应用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS),研究了Mn薄膜/Rh(100)上乙醇的吸附和分解,提出了表面吸附和分解的反应工,在300K时,蒸镀的Mn在清洁Rh(100)表面上以层层模式生长;在130-300K间,在25mLMn/Rh(100)表面上吸附20L乙醇的TDS结果与乙醇在Rh(100)表面上的结果一致在155K处,脱附出多层凝聚态吸附的乙醇;升温到255K,脱附出H2和CH4,继续升温,出现了与乙醇在R (100)表面上不一致的现象,在470K,同时出现了第2个H2和CH4的脱附峰,在500K,脱附极少量的CO;在950K附近,脱附出大量CO。  相似文献   

10.
The photoionization spectroscopy of Si(CH3)3Cl in the range of 50 -130 nm was studied with synchrotron radiation source. The adiabatic ionization potentials of molecule Si(CH3)3Cl and radical Si(CH3)3 are 10.06 ±0.02 eV and 7.00±0.03 eV respectively. In addition, the appearance potentials of Si(CH3)2Cl+, Si(CH3)3+, SiCl+ and SiCH3+ were determined:
AP(Si(CH3)2Cl+) =10.49±0.02eV, AP(Si(CH3)3+) = 11.91 ±0.02eV
AP(SiCl+) = 18.64 ±0.06eV, AP(SiCH3+)= 18.62 ±0.02eV
From these, some chemical bond energies of Si(CH3)3Cl+ were calculated:
D(Si(CH3)2Cl+ - CH3) =0.43 ±0.02eV, D(Si(CH3)3+ - Cl) = 1.85 ± 0.02eV
D(SiCH3+ - (2CH3 + Cl)) = 8.56 ± 0.06eV, D(SiCH3+ - 2CH3) =6.71±0.06eV
D(SiCl+ - 3CH3) = 8.58 ± 0.06eV, D(SiCl+- 2CH3) = 8.15 ±0.06eV
D(SiCH3+- (CH3 + Cl)) =8.13 ±0.06eV  相似文献   

11.
The effect of surface-bound hydrogen adatoms on adsorption, desorption, and reaction of ethylene (CH(2)=CH(2)) on a (radical3 x radical3)R30 degrees-Sn/Pt(111) surface alloy with theta(Sn) = 0.33 was investigated by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed H decreased the saturation coverage of chemisorbed ethylene and less H was required to completely block ethylene chemisorption on this alloy than that on Pt(111). This is also the first report of extensive H site-blocking of ethylene chemisorption on Pt(111). Preadsorbed H also decreased the desorption activation energy of ethylene on the alloy surface. The reaction chemistry of ethylene on this Sn/Pt(111) alloy is dramatically different than on the Pt(111) surface: the H-addition reaction channel taking ethylene to ethane on Pt(111) is totally inhibited on the alloy. This is important information for advancing understanding of the surface chemistry involved in hydrogenation and dehydrogenation catalysis.  相似文献   

12.
The laser flash photolysis resonance fluorescence technique was used to monitor atomic Cl kinetics. Loss of Cl following photolysis of CCl4 and NaCl was used to determine k(Cl + C6H6) = 6.4 x 10(-12) exp(-18.1 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 578-922 K and k(Cl + C6D6) = 6.2 x 10(-12) exp(-22.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 635-922 K. Inclusion of literature data at room temperature leads to a recommendation of k(Cl + C6H6) = 6.1 x 10(-11) exp(-31.6 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) for 296-922 K. Monitoring growth of Cl during the reaction of phenyl with HCl led to k(C6H5 + HCl) = 1.14 x 10(-12) exp(+5.2 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 294-748 K, k(C6H5 + DCl) = 7.7 x 10(-13) exp(+4.9 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 292-546 K, an approximate k(C6H5 + C6H5I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) over 300-750 K, and an upper limit k(Cl + C6H5I) < or = 5.3 x 10(-12) exp(+2.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 300-750 K. Confidence limits are discussed in the text. Third-law analysis of the equilibrium constant yields the bond dissociation enthalpy D(298)(C6H5-H) = 472.1 +/- 2.5 kJ mol(-1) and thus the enthalpy of formation Delta(f)H(298)(C6H5) = 337.0 +/- 2.5 kJ mol(-1).  相似文献   

13.
Nine dinuclear copper(II) complexes with hxta5- ligands [H5hxta = N,N'-(2-hydroxy-1,3-xylylene)-bis-(N-carboxymethylglycine)]: [Cu2(MeO-hxtaH)(H2O)2] x 4H2O (1), [Na(micro-H2O)2(H2O)6][Cu2(Cl-hxta)(H2O)3]2 x 6H2O (2), [Cu(H2O)6][Cu2(Me-hxta)(H2O)2](NO3) x 2H2O (3), [Cu2(R-hxtaH)(H2O)3] x 3H2O [R = Cl (4), CH3 (5), and MeO (6)], [Cu2(MeO-hxtaH2)(micro-X)(CH3OH)] x 3CH3OH [X = Cl (7), Br (8)] and K5Na(micro-H2O)10[Cu2(micro-CO3)(Me-hxta)]2 x 4H2O (9), have been synthesized and structurally characterized. In complexes 4-7, the dinuclear units are linked via novel pairwise supramolecular interactions involving the ligand carboxylate groups. The intra- and intermolecular magnetic interactions have been quantified, and the coupling constants have been related to the structural geometries.  相似文献   

14.
FTIR smog chamber techniques were used to measure k(Cl+n-C3H7OH) = (1.74 +/- 0.15) x 10-10 and k(Cl+CH2ClCH2CH2OH) = (7.54 +/- 0.73) x 10-11 cm3 molecule-1 s-1 in 700 Torr of N2 at 296 K. The reaction of Cl with n-C3H7OH gives CH3CH2CHOH, CH3CHCH2OH, and CH2CH2CH2OH radicals in yields of 60 +/- 5, 25 +/- 8, and 15 +/- 3%, respectively. Neither CH3CH2CHClOH nor CH3CHClCH2OH is available commercially, and infrared spectra for the three chlorides CH3CH2CHClOH, CH3CHClCH2OH, and CH2ClCH2CH2OH were calibrated experimentally. MP2/6-31G(d,p) calculations were used to corroborate the experimental vibrational assignments. Analysis reveals that each geometric isomer possesses several structurally and spectroscopically distinct conformers arising from intramolecular hydrogen bonding and, in the case of CH3CH2CHClOH, negative hyperconjugation. These conformers interchange slowly enough to be distinguished within the room-temperature vibrational spectrum. The experimentally observed vibrational spectra are well described by a Boltzmann-weighted superposition of the conformer spectra. As is typical of alpha-halogenated alcohols, CH3CH2CHClOH readily decomposes heterogeneously to propanal and HCl.  相似文献   

15.
The interaction of low-energy electrons with multilayers of SiCl(4) adsorbed on Si(111) leads to production and desorption of Cl((2)P(32)), Cl((2)P(12)), Si, and SiCl. Resonant structure in the yield versus incident electron energy (E(i)) between 6 and 12 eV was seen in all neutral channels and assigned to dissociative electron attachment (DEA), unimolecular decay of excited products produced via autodetachment and direct dissociation. These processes yield Cl((2)P(32)) and Cl((2)P(12)) with nonthermal kinetic energies of 425 and 608 meV, respectively. The Cl((2)P(12)) is produced solely at the vacuum surface interface, whereas the formation of Cl((2)P(32)) likely involves subsurface dissociation, off-normal trajectories, and collisions with neighbors. Structure in the Cl((2)P(32)) yield near 14 and 25 eV can originate from excitation of electrons in the 2e, 7t(2) and 6t(2), 6a(1) levels, respectively. Although the 14 eV feature was not present in the Cl((2)P(12)) yield, the broad 25 eV feature, which involves complex Auger filling of holes in the 6t(2) and 6a(1) levels of SiCl(4), is observed. Direct ionization, exciton decay, and DEA from secondary electron scattering all occur at E(i)>14 eV. Si and SiCl were detected via nonresonant ionization of SiCl(x) precursors that are produced via the same states and mechanisms that yield Cl. The Si retains the kinetic energy profile of the desorbed precursors.  相似文献   

16.
用高分辨电子能量损失谱,热脱附谱,紫外光电子能谱研究了CH3在清洁及预吸附氧Pd表面上的热稳定性。CH3由CH3I在Pd表面的热分解来产生。CH3I的HREELS表明,CH3中的C-H键近似与表面平行,CH3I在Pd表面低于110K时已裂解为CH3和I,大量的CH3在200-210K的温度范围内的H结合并以CH4的形式脱附,但在氧改性表面,CH4脱附的温度范围变宽,脱附温度有所提高,可能是由于表面  相似文献   

17.
The CH2Cl + CH3 (1) and CHCl2 + CH3 (2) cross-radical reactions were studied by laser photolysis/photoionization mass spectroscopy. Overall rate constants were obtained in direct real-time experiments in the temperature region 301-800 K and bath gas (helium) density (6-12) x 10(16) atom cm(-3). The observed rate constant of reaction 1 can be represented by an Arrhenius expression k1 = 3.93 x 10(-11) exp(91 K/T) cm3 molecule(-1) s(-1) (+/-25%) or as an average temperature-independent value of k1= (4.8 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). The rate constant of reaction 2 can be expressed as k2= 1.66 x 10(-11) exp(359 K/T) cm3 molecule(-1) s(-1) (+/-25%). C2H4 and C2H3Cl were detected as the primary products of reactions 1 and 2, respectively. The experimental values of the rate constant are in reasonable agreement with the prediction based on the "geometric mean rule." A separate experimental attempt to determine the rate constants of the high-temperature CH2Cl + O2 (10) and CHCl2 + O2 (11) reaction resulted in an upper limit of 1.2 x 10(-16) cm(3) molecule(-1) s(-1) for k10 and k11 at 800 K.  相似文献   

18.
The present study investigates structural and functional aspects of the redox chemistry of rhenium(III) chloride [Re3Cl9] (1) in aqueous and organic solvents, with emphasis on the dioxygen-activating capabilities of reduced rhenium clusters bearing the Re3(8+) core. Dissolution of 1 in HCl (6 M) generates [Re3(mu-Cl)3Cl9]3- (2a), which can be isolated as the tetraphenylphosphonium salt (2b). Anaerobic one-electron reduction of 1 by Hg in HCl (6-12 M) produces [(C6H5)4P]2[Re3(mu-Cl)3Cl7(H2O)2].H2O (3), the structure of which features a planar [Re3(mu-Cl)3Cl3] framework (Re3(8+) core), involving two water ligands that occupy out-of-plane positions in a trans arrangement. Compound 3 dissociates in the presence of CO, yielding [(C6H5)4P]2[ReIII2Cl8] (4) and an unidentified red carbonyl species. In situ oxidation (O2) of the reduced Re3(8+)-containing cluster in HCl (6 M) produces quantitatively 2a, whereas oxidation of 3 in organic media results in the formation of [(C6H5)4P]4[(Re3(mu-Cl)3Cl7(mu-OH))2].2CH2Cl2 (5). The structure of 5 reveals that two oxygen ligands (hydroxo units) bridge asymmetrically two Re3(9+) triangular clusters. The origin of these hydroxo units derives from the aquo ligands, rather than O2, as shown by 18O2 labeling studies. The hydroxo bridges of 5 can be replaced by chlorides upon treatment with Me3SiCl to afford the analogous [(C6H5)4P]4[(Re3(mu-Cl)3Cl7(mu-Cl))2].10CH2Cl2 (6). The reaction of 5 with Hg in HCl (6 M)/tetrahydrofuran regenerates compound 3. Complexes 1-3 exhibit nitrile hydratase type activity, inducing hydrolysis of CH3CN to acetamide. The reaction of 3 with CH3CN yields [(C6H5)4P]2[Re3(mu-Cl)3Cl6.5(CH3CN)1.5(CH3C(O)NH)0.5] (7), the structure of which is composed of [Re3(mu-Cl)3Cl7(CH3CN)2]2- (7a) and [Re3(mu-Cl)3Cl6(CH3CN)(CH3C(O)NH)]2- (7b) (Re3(8+) cores) as a disordered mixture (1:1). Oxidation of 7 with O2 in CH3CN affords [(C6H5)4P]2[Re3(mu-Cl)3Cl7(CH3C(O)NH)].CH3CN (8) and small amounts of [(C6H5)4P][ReO4] (9). Compound 8 is also independently isolated from the reaction of 2b with wet CH3CN, or by dissolving 5 in CH3CN. In MeOH, 5 dissociates to afford [(C6H5)4P]2[Re3(mu-Cl)3Cl8(MeOH)].MeOH (10).  相似文献   

19.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

20.
The reaction of Cl atoms with iodoethane has been studied via a combination of laser flash photolysis/resonance fluorescence (LFP-RF), environmental chamber/Fourier transform (FT)IR, and quantum chemical techniques. Above 330 K, the flash photolysis data indicate that the reaction proceeds predominantly via hydrogen abstraction. The following Arrhenius expressions (in units of cm3 molecule(-1) s(-1)) apply over the temperature range 334-434 K for reaction of Cl with CH3CH2I (k4(H)) and CD3CD2I (k4(D)): k4(H) = (6.53 +/- 3.40) x 10(-11) exp[-(428 +/- 206)/T] and k4(D) = (2.21 +/- 0.44) x 10(-11) exp[-(317 +/- 76)/T]. At room temperature and below, the reaction proceeds both via hydrogen abstraction and via reversible formation of an iodoethane/Cl adduct. Analysis of the LFP-RF data yields a binding enthalpy (0 K) for CD3CD2I x Cl of 57 +/- 10 kJ mol(-1). Calculations using density functional theory show that the adduct is characterized by a C-I-Cl bond angle of 84.5 degrees; theoretical binding enthalpies of 38.2 kJ/mol, G2'[ECP(S)], and 59.0 kJ mol(-1), B3LYP/ECP, are reasonably consistent with the experimentally derived result. Product studies conducted in the environmental chamber show that hydrogen abstraction from both the -CH2I and -CH3 groups occur to a significant extent and also provide evidence for a reaction of the CH3CH2I x Cl adduct with CH3CH2I, leading to CH3CH2Cl formation. Complementary environmental chamber studies of the reaction of Cl atoms with 2-iodopropane, CH3CHICH3, are also presented. As determined by relative rate methods, the reaction proceeds with an effective rate coefficient, k6, of (5.0 +/- 0.6) x 10(-11) cm3 molecule(-1) s(-1) at 298 K. Product studies indicate that this reaction also occurs via two abstraction channels (from the CH3 groups and from the -CHI- group) and via reversible adduct formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号