首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A difficulty with the design and operation of an electrokinetically operated DNA hybridization microfluidic chip is the opposite direction of the electroosmotic flow and electrophoretic mobility of the oligonucleotides. This makes it difficult to simultaneously deliver targets and an appropriate hybridization buffer simultaneously to the probe sites. In this work we investigate the possibility of coating the inner walls of the microfluidic system with hexadimentrine bromide (polybrene, PB) and other cationic polymers in order to reverse the direction of electroosmotic flow so that it acts in the same direction as the electrophoretic transport of the oligonucleotides. The results indicated that the electroosmotic flow (EOF) in channels that were coated with the polymer could be reversed in 1× TBE buffer or 1× SSC buffer. Under these conditions, the DNA and EOF move in the same direction, and the flow can be used to deliver DNA to an area for selective hybridization within the channel. The effects of coating the surface of a nucleic acid microarray with polybrene were also studied to assess non-selective adsorption and stability. The polybrene coating significantly reduced the extent of non-selective adsorption of oligonucleotides in comparison to adsorption onto a glass surface, and the coating did not alter the extent of hybridization. The results suggest that use of the coating makes it possible to achieve semi-quantitative manipulation of nucleic acid oligomers for delivery to an integrated microarray or biosensor.  相似文献   

2.
The rapid development of DNA capillary electrophoresis (CE) technology has increased the demand of new low viscosity sieving matrices with high separation capacity. The high throughput, resolution and automatic operation of CE systems have stimulated the application of the technique to different kinds of DNA analysis, including DNA sequencing, separation of restriction fragments, PCR products and synthetic oligonucleotides. In addition specific methods for PCR-based mutation assays for the study of known and unknown point mutations have been developed for use in CE. The key component for a large scale application of CE to DNA analysis is the availability of appropriate sieving matrices. This article gives an overview of the linear polymers used as DNA separation matrices with particular emphasis on the polymers that combine high sieving capacity, low viscosity and chemical resistance.  相似文献   

3.
Du XG  Fang ZL 《Electrophoresis》2005,26(24):4625-4631
A simple and robust static adsorptive (dynamic) coating process using 2% hydroxyethylcellulose was developed for surface modification of poly(methyl methacrylate) (PMMA) microfluidic chips for DNA separations, suitable for usage over extended periods, involving hundreds of runs. The coating medium was also used as a sieving matrix for the DNA separations following the coating process. Four consecutive static treatments, by simply filling the PMMA chip channels with sieving matrix once every day, were required for obtaining a stable coating and optimum performance. The performance of the coated chips at different phases of the coating process was studied by consecutive gel electrophoretic separations with LIF detection using a PhiX-174/HaeIII DNA digest sample. The coated chip, with daily renewal of the sieving matrix, showed high stability in performance during a 25-day period of systematic study, involving more than 100 individual runs. The performance of the coated chip also remained almost the same after 3 months of continuous usage, during which over 200 separations were performed. The average precision of migration time for the 603-bp fragment was 1.31% RSD (n = 6) during the 25-day study, with a separation efficiency of 6.5 x 10(4) plates (effective separation length 5.4 cm).  相似文献   

4.
A simple DNA diagnosis method using microfluidics has been developed which requires simple and straightforward procedures such as injection of sample and probe DNA solutions. This method takes advantage of the highly accurate control of fluids in microchannels, and is superior to DNA microarray diagnosis methods due to its simplicity, highly quantitative determination, and high-sensitivity. The method is capable of detecting DNA hybridization for molecules as small as a 20 mer. This suggests the difference in microfluidic behavior between single strand DNA (ssDNA) and double stranded DNA (dsDNA). In this work, influence of both the inertial force exerted on DNA molecules and the diffusion of DNA molecules was investigated. Based on the determination of these parameters for both ssDNA and dsDNA by experiments, a numerical model describing the phenomena in the microchannel was designed. Computational simulation results using this model were in good agreement with previously reported experimental results. The simulation results showed that appropriate selection of the analysis point and the design of microchannel structure are important to bring out the diffusion and inertial force effects suitably and increase the sensitivity of the detection of DNA hybridization, that is, the analytical performance of the microfluidic DNA chip.  相似文献   

5.
Ro KW  Hahn JH 《Electrophoresis》2005,26(24):4767-4773
Precolumn derivatization and chiral separation of DL-amino acids based on diastereomerization have been performed on an integrated poly(dimethylsiloxane) microchip. Diastereomeric derivatives were formed in a microfabricated precolumn reactor by the reaction of amino acid enantiomers with o-phthaldialdehyde/2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose (OPA/TATG), and separated by MEKC in an achiral environment without chiral selectors in the running buffer. Optimized precolumn reactions and chiral separations of amino acids were achieved within 2.5 min. Resolutions of diastereomers of OPA/TATG-amino acids were in the range of 2.5-6.1 at optimized separation conditions. Simultaneous separation of a mixture of five chiral amino acids was successfully performed in a single run in less than 100 s.  相似文献   

6.
Asymmetric pulsed field electrophoresis within crystalline arrays is used to generate angular separation of DNA molecules. Four regimes of the frequency response are observed, a low frequency rise in angular separation, a plateau, a subsequent decline, and a second plateau at higher frequencies. It is shown that the frequency response for different sized DNA is governed by the relation between pulse time and the reorientation time of DNA molecules. The decline in angular separation at higher frequencies has not previously been analyzed. Real‐time videos of single DNA molecules migrating under high frequency‐pulsed electric field show the molecules no longer follow the head to tail switching, ratchet mechanism seen at lower frequencies. Once the pulse period is shorter than the reorientation time, the migration mechanism changes significantly. The molecule reptates along the average direction of the two electric fields, which reduces the angular separation. A freely jointed chain model of DNA is developed where the porous structure is represented with a hexagonal array of obstacles. The model qualitatively predicts the variation of DNA angular separation with respect to frequency.  相似文献   

7.
Circulating tumor cells are specifically referred as cells that detached from the primary tumor and are present in the bloodstream. They could be isolated from blood and used as representative biomarker for predicting cancer prognoses. Here, we developed a microfluidic chip with multiple curved channels, in which DNA fragments and antibody‐based enrichment are exploited to capture circulating tumor cells in blood sample. By introducing DNA fragments as long tentacles, the active antibody could be extended into the microchannel stereoscopically, which could greatly increase the chances of adhesion in a multidirectional way and improve the capture efficacy. Several pivotal factors for cell capturing were optimized to the best state. Compared to conventional chips for planar capturing, the capture efficiency of MCF‐7 cells was greatly increased from 37.17 to 85.10%. For the detection of MCF‐7‐containing artificial blood sample detection, the capture efficiency of tumor cells was about 74.19 ± 2.13%, which was obviously better than the result of flow cytometry (29.67 ± 4.02%). Captured cells were easily released from the surface of microfluidic chip with high cell viability, which could be investigated for the molecular analysis in the field of tumor diagnosis.  相似文献   

8.
In this paper, we describe the use of an integrated circuit (IC) microchip system as a detector in multiplex capillary electrophoresis (CE). This combination of multiplex capillary gel electrophoresis and the IC microchip technology represents a novel approach to DNA analysis on the microchip platform. Separation of DNA ladders using a multiplex CE microsystem of four capillaries was monitored simultaneously using the IC microchip system. The IC microchip-CE system has advantages such as low cost, rapid analysis, compactness, and multiplex capability, and has great potential as an alternative system to conventional capillary array gel electrophoresis systems based on charge-coupled device (CCD) detection.  相似文献   

9.
For the adoption of the EU directive “Restriction on use of certain Hazardous Substances” and “Waste Electrical and Electronic Equipment” using X-ray fluorescence analysis suitable standard materials are required.  相似文献   

10.
A thermo-responsive separation matrix, consisting of Pluronic F127 tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide), was used to separate DNA fragments by microchip electrophoresis. At low temperature, the polymer matrix was low in viscosity and allowed rapid loading into a microchannel under low pressure. With increasing temperatures above 25°C, the Pluronic F127 solution forms a liquid crystalline phase consisting of spherical micelles with diameters of 17–19 nm. The solution can be used to separate DNA fragments from 100 bp to 1500 bp on poly(methyl methacrylate) (PMMA) chips. This temperature-sensitive and viscosity-tunable polymer provided excellent resolution over a wide range of DNA sizes. Separation is based on a different mechanism compared with conventional matrices such as methylcellulose. To illustrate the separation mechanism of DNA in a Pluronic F127 solution, DNA molecular imaging was performed by fluorescence microscopy with F127 polymer as the separation matrix in microchip electrophoresis. Figure Temperature dependence of the viscosity of 20% w/w Pluronic F127 solution in 1xTBE buffer. Dotted approximates resultant curve.  相似文献   

11.
Occupational exposure to Cr is concerning because of its myriad of health effects. Assessing chromium exposure is also cost and resource intensive because the analysis typically uses sophisticated instrumental techniques like inductively coupled plasma-mass spectrometry (ICP-MS). Here, we report a novel, simple, inexpensive microfluidic paper-based analytical device (μPAD) for measuring total Cr in airborne particulate matter. In the μPAD, tetravalent cerium (Ce(IV)) was used in a pretreatment zone to oxidize all soluble Cr to Cr(VI). After elution to the detection zone, Cr(VI) reacts with 1,5-diphenylcarbazide (1,5-DPC) forming 1,5-diphenylcarbazone (DPCO) and Cr(III). The resulting Cr(III) forms a distinct purple colored complex with the DPCO. As proof-of-principle, particulate matter (PM) collected on a sample filter was analyzed with the μPAD to quantify the mass of total Cr. A log-linear working range (0.23–3.75 μg; r2 = 0.998) between Cr and color intensity was obtained with a detection limit of 0.12 μg. For validation, a certified reference containing multiple competing metals was analyzed. Quantitative agreement was obtained between known Cr levels in the sample and the Cr measured using the μPAD.  相似文献   

12.
Natural fibers are identified as one of the effective alternatives for reinforcing the polymer matrices on account of their sustainability and renewable characteristics by replacing the synthetic fibers. This study is intended to apprehend the properties of the fibers derived from the stem of Calotropis gigantea plant. The functional groups of biopolymers were recognized by Fourier transform infrared spectrum. The crystalline nature of the cellulose that represents the mechanical strength and integrity of the fibers was found from the X-ray diffraction, whereas the thermal behavior was studied by thermogravimetric analysis. Scanning electron microscope was used to study the morphology of the fibers. The results of these analytical studies have shown that the crystallinity index of the fibers was 56.08% and the fibers were able to withstand a temperature of about 220°C proving that the fibers can be used as effective reinforcements for polymer matrices similar to the commonly used bio-fibers.  相似文献   

13.
We propose a new coating technique for fused silica capillaries using silanization with trimethylchlorosilane and diethylamine as a mediating agent in DNA separation using capillary electrophoresis. The proposed coating technique is simple and stable at a high pH. Capillaries coated by the new preparation method give excellent reproducibility for DNA fragment analysis with a good relative standard deviation of less than 0.7% for 150 runs and good stability at pH 8.2. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1405–1420, 2002  相似文献   

14.
15.
《Electrophoresis》2018,39(8):1031-1039
A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro‐column, pH gradient generation, and fraction collection in a single device. Using a sieve micro‐valve, anion exchange particles were packed into a microchannel in order to realize a solid‐phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro‐column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin–fluorescein isothiocyanate conjugate (FITC‐BSA) and R‐Phycoerythrin (R‐PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development.  相似文献   

16.
17.
Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected psiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.  相似文献   

18.
Zhang L  Dang F  Baba Y 《Electrophoresis》2002,23(14):2341-2346
The stepwise gradient of linear polymer matrices in microchannel electrophoresis is proposed as a means of achieving high-resolution separation of DNA samples containing a wide range of fragment sizes. In this method, multiple discrete steps in terms of polymer type or concentration are created in the microchannel by injecting appropriate solutions in order. The mixing of the various steps is found to be negligible compared to the effective length of separation channel, confirming that a stepwise gradient of matrices is formed. This technique is successfully applied to the analysis of restriction digest fragments and DNA ladders, and is demonstrated to provide higher resolution than the isocratic method, for both small and large fragments simultaneously. Even though the stepwise gradient is created manually, the reproducibility of the migration times of fragments in DNA samples is found to be quite good. Taken the separation of 100 bp DNA ladder in three steps gradient pattern as an example, the relative standard deviations of migration times are respectively less than 0.53% and 3.1% in six consecutive injections in one channel and in different channels. The migration of DNA fragments in gradient mode is shown to be similar to that for the isocratic scheme, allowing the design of each step to be made in reference to existing knowledge. These promising results indicate the great potential of this stepwise gradient method for the analysis of DNA by microchip electrophoresis, offering both high resolution and good reproducibility.  相似文献   

19.
用于毛细管电泳分离DNA的聚合物介质的研究进展   总被引:1,自引:0,他引:1  
综述了用于毛细管电泳分离DNA及测序的聚合物介质的研究进展。这类聚合物主要有均聚物、无规共聚物、嵌段共聚物、接枝共聚物、共混聚合物、准互穿聚合物网络和微交联纳米凝胶聚合物,并对各种结构的聚合物的筛分性能进行了比较。  相似文献   

20.
Nowadays, the detection, localization, and quantification of different kinds of features in an RGB image (segmentation) is extremely helpful for, e.g., process monitoring or customer product acceptance. In this article, some of the most commonly used RGB image segmentation approaches are compared in an orange quality control case study. Analysis of variance and correspondence analysis are combined for determining their most relevant differences and highlighting their pros and cons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号