首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
化学位移估算研究ATP构象随溶液pH值的变化   总被引:2,自引:0,他引:2  
利用Johnson和Bovey的理论和方法计算了不同扭曲角χ(O4′-C1′-N9-C4)的ATP(5′-三磷酸腺苷)分子中糖环质子H1′和H2′由于环流效应引起的化学位移.H1′的化学位移与扭曲角χ有较强的依赖关系,反映了ATP在溶液中细微的构象变化.将计算结果与实验结果比较,证明在本文讨论的pH值范围(1~10)内,Mg2+加入后,ATP的扭曲角χ在230~360°范围内变化.随溶液的pH值减小,ATP分子的构象由trans 构象通过-gauche构象转变为cis构象. 从而证明在酸性条件下, ATP倾向于以cis构象存在,而在碱性条件下trans构象更为稳定,从另一方面支持了在酸性条件下N1参与配位而在碱性条件下N7参与配位的结论.在讨论中也考虑了由pH变化所引起的环流强度的变化.  相似文献   

2.
The excellent results of dispersion‐corrected density functional theory (DFT‐D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT‐D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss‐NMR calibration compounds are investigated by single‐crystal X‐ray diffraction, molecular dynamics and DFT‐D calculations. The crystal structure of 3‐methylglutaric acid is reported. The rotator phases of adamantane and hexamethylbenzene at room temperature are successfully reproduced in the molecular dynamics simulations. The calculated 13C chemical shifts of these compounds are in excellent agreement with experiment, with a root‐mean‐square deviation of 2.0 ppm. It is confirmed that a combination of classical molecular dynamics and DFT‐D chemical shift calculation improves the accuracy of calculated chemical shifts.  相似文献   

3.
The structure of 1-disubstituted 4-(4'-pyridyl)pyridinium methylides or 4,4'-bipyridinium monoylides (2-5) with a wide range of carbanion substituents, were determined using 13C NMR signals in dimethylsufoxide (DMSO-d(6)) solution. For the first time, we developed a systematic determination of 13C NMR chemical shifts of the ylidic carbon using a long-range correlated (1H-(13)C) HMBC experiments. The chemical shift values are discussed in terms of magnetic and/or electronic effects of the ylidic carbon substituents. From the extracted NMR parameters and the results of accompanying quantum chemical DFT calculations for a three-dimensional (3D)-structure representation, we found a long distance electronic effect where the aromatic heterocycle C2z.sbnd;C6 and C4 centers are perturbed according to the electron acceptor strengths of ylidic carbon substituents in all monoylides (2-5c) capable to stabilize in a planar conformation. No significant perturbation on C2z.sbnd;C6 and C4 centers are found in all other monoylides (2-5a, b) that adopted a non-planar conformation. Good similar linear dependences of the chemical shift variation Delta (calculated by the differences of analogous C2z.sbnd;C6 and C4 chemical shifts in non-planar and planar monoylides) with the ylidic carbon chemical shifts modulated by the strength of electron acceptor substituents pointed out the resonance interaction or the delocalization phenomena of the ylidic carbon charge on the heterocycle.  相似文献   

4.
We describe the conformation and stereospecific 1H and 13C chemical shift assignments of longifolene 1 and its penultimate precursor 2 through the combined use of ab initio calculations and experimental NMR techniques. The predicted stable conformation for both compounds was similar and adopts a twisted chair conformation at the seven-membered ring where C4 lies on top of the exocyclic double bond. The calculated chemical shifts for the stable conformation agree well with the experimental values.  相似文献   

5.
We investigate the structures, NMR chemical shifts, absorption spectra, frontier molecular orbitals, and transition density matrices of pi-stacked polyfluorenes by ab initio calculations. For F1-F4, we consider two different conformations, syn and anti. The simulated 1H NMR chemical shifts are in good agreement with the previous experiment, and the significantly upfielded chemical shifts explain that the fluorene moieties are stacked on each other. It is found that the relative stability for syn and anti conformers is almost equivalent in B3LYP calculations; however, the syn conformer becomes much more stable than the anti conformer in MP2 calculations, which is consistent with the experimental finding that only the syn conformers are relevant. The vertical detachment energy, which is linearly proportional to the ionization potential, shows the same size dependence as the previous experiment. The electron attachment energy decreases exponentially as the size increases, which implies that the electron transport would be possible even for long chains such as F3 and F4. This was evident from the frontier molecular orbitals (HOMO and LUMO). Also, it is found that the syn conformers are very favorable for electron transport through the pi-stacked fluorene moieties.  相似文献   

6.
Nucleic acids transiently morph into alternative conformations that can be difficult to characterize at the atomic level by conventional methods because they exist for too little time and in too little abundance. We recently reported evidence for transient Hoogsteen (HG) base pairs in canonical B-DNA based on NMR carbon relaxation dispersion. While the carbon chemical shifts measured for the transient state were consistent with a syn orientation for the purine base, as expected for A(syn)?T(anti) and G(syn)?C(+)(anti) HG base pairing, HG type hydrogen bonding could only be inferred indirectly. Here, we develop two independent approaches for directly probing transient changes in N-H···N hydrogen bonds and apply them to the characterization of transient Hoogsteen type hydrogen bonds in canonical duplex DNA. The first approach takes advantage of the strong dependence of the imino nitrogen chemical shift on hydrogen bonding and involves measurement of R(1ρ) relaxation dispersion for the hydrogen-bond donor imino nitrogens in G and T residues. In the second approach, we assess the consequence of substituting the hydrogen-bond acceptor nitrogen (N7) with a carbon (C7H7) on both carbon and nitrogen relaxation dispersion data. Together, these data allow us to obtain direct evidence for transient Hoogsteen base pairs that are stabilized by N-H···N type hydrogen bonds in canonical duplex DNA. The methods introduced here greatly expand the utility of NMR in the structural characterization of transient states in nucleic acids.  相似文献   

7.
The magnetic deshielding caused by the amido group on CON-CHalpha protons of secondary amides can easily be correlated with DFT-based structures at the B3LYP/6-31G level of theory via a novel algorithm that refines previous models, such as the classical McConnell equation. The shift is given by delta = a + 2.16 cos2(alpha - 35)/d, where alpha denotes the virtual dihedral angle resulting from linking the carbonyl and the alpha-carbons and d is the distance (A) between the shifted proton and the carbonyl oxygen. Notably, in this equation a is a parameter that can be optimized for different solvents, namely, CDCl3, DMSO-d6, and D2O. For the development of these correlations, the preferential conformation of amides is taken from the optimized structures in the gas phase obtained at the DFT level. The deshielding on anti and gauche protons in both rotamers of (Z)-acetamides and E/Z isomers of formamides has been evaluated. This methodology has proved to be highly reliable, allowing us to discard ab initio or DFT conformational arrangements when shifts calculated by the above-mentioned equation differ from the experimental values. Thus, the anti disposition between the CHalpha proton and the N-H bond appears to be the more stable conformation of simple amides. For amides bearing only one proton at Calpha, a local syn minimum can equally be characterized. The rotational barriers around the CON-alkyl bond along with the pyramidalization of the amido group have also been reassessed. As the conformation is taken away from anti or local syn minima, the nonplanarity of the amido group appears to increase.  相似文献   

8.
The factors contributing to the accuracy of quantum-chemical calculations for the prediction of proton NMR chemical shifts in molecular solids are systematically investigated. Proton chemical shifts of six solid amino acids with hydrogen atoms in various bonding environments (CH, CH2, CH3, OH, SH and NH3) were determined experimentally using ultra-fast magic-angle spinning and proton-detected 2D NMR experiments. The standard DFT method commonly used for the calculations of NMR parameters of solids is shown to provide chemical shifts that deviate from experiment by up to 1.5 ppm. The effects of the computational level (hybrid DFT functional, coupled-cluster calculation, inclusion of relativistic spin-orbit coupling) are thoroughly discussed. The effect of molecular dynamics and nuclear quantum effects are investigated using path-integral molecular dynamics (PIMD) simulations. It is demonstrated that the accuracy of the calculated proton chemical shifts is significantly better when these effects are included in the calculations.  相似文献   

9.
To what extent, if any, is the conformation of secondary amides revealed by theory? This question has now been addressed by computational methods using calculations at the B3LYP/6-31G level of theory and (1)H NMR spectroscopy. Both gas-phase and solvent studies predict a Z-anti conformation to be the lowest in energy for an evaluated series of acetamides. Moreover, Z-anti conformations may also be inferred from the chemical shifts of the N-CH alpha protons determined by NMR spectroscopy. Thus, a proton situated anti to the N-H proton consistently appears approximately 0.8 ppm further downfield than a proton situated gauche to the N-H proton. This finding, which could only be derived by using the DFT calculations of conformational preference as a guide to interpret the NMR data, might prove to be useful as a simple and convenient methodology for establishing amide conformation experimentally.  相似文献   

10.
This work presents the first comparative analysis of two crystallographic modifications of quercetin (3,3',4',5,7-penta-hydroxyflavone). The existence of dihydrate and unhydrated forms of quercetin in the solid state is confirmed by several experimental techniques e.g. X-ray diffraction of powders, DSC, TGA, and NMR. Our studies allow an understanding of the complexity of quercetin samples obtained from different sources. A PASS-2D experiment is employed to establish principal values of 13C chemical shift tensors for both modifications. Solid state NMR spectroscopy and DFT GIAO calculations provide unique information about NMR shielding and electron density distribution for different conformers. It has been concluded that changes of conformation and hydrogen bonding pattern have great influence on bond order parameters of quercetin. Theoretical calculations and experimental data do not exclude the existence of the syn conformer of quercetin, which so far was not considered in the condensed phase.  相似文献   

11.
NMR spectra (1H, 13C, 15N) of para- and meta-substituted benzohydroxamic acids were studied in dry dimethyl sulfoxide solutions. The 13C chemical shifts were very close to those found by cross-polarization magic angle spinning in solids, the hydroxamic (not hydroximic) structure of which is unambiguous. The hydroxamic structure of these acids in DMSO solutions was proved independently by their 15N chemical shifts. The 15N and 1H chemical shifts of the NH-OH fragment showed excellent mutual dependences and dependences on the nature of the ring substituent. According to these dependences and ab initio energy calculations, all the acids assume the same Z conformation. Proton exchange between hydroxamic OH and NH groups in DMSO proceeded by both intra- and intermolecular exchange and the rates did not exhibit any simple relationship to the substituent constants.  相似文献   

12.
The structural determination of small organic molecules is mainly undertaken by using NMR techniques, although it is increasingly supplemented by using computational methods. NMR parameters, such as chemical shifts and coupling constants, are extremely sensitive indicators of local molecular conformation and are a source of structural evidence. However, their interpretation is fairly challenging in many circumstances, such as the case of the new polyether squalene derivative nivariol, the structure of which was elucidated by means of NMR spectroscopy and DFT calculations. The potential flexibility of this molecule and the high number of quaternary carbon atoms that it contains make its configurational assignment very difficult. Moreover, the relative configuration of four separated stereoclusters was established and subsequently connected by using NOE and J‐based analysis, as well as by a comparison of its experimental 13C NMR chemical shifts with the corresponding population‐weighted values, as calculated by using DFT methods. Limitations of these used approaches became apparent but were overcome by combining the two methods.  相似文献   

13.
Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.  相似文献   

14.
The high-resolution (1)H, (13)C, (1)H-(1)H COSY and (1)H-(13)C COSY NMR spectra have been recorded in CDCl(3) for arylacetonitriles 1-12 and analyzed. The arylacetonitriles 3-7 exist in two isomeric forms E (methyl group is anti to cyano group) and Z (the methyl group is syn to cyano group) in solution. Normal chair conformation with equatorial orientations of phenyl rings at C-2 and C-6 for monocyclic nitriles 1 and 2, epimeric chair structure EC (axial configuration of methyl group at C-3) for both the E and Z isomers of arylacetonitrile derivatives (3-7) and a distorted boat form, B(3), for the N-acylacetonitrile derivatives (8-10) have been proposed based on NMR data. The bicyclic nitriles 11 and 12 exist in twin chair conformations in solution. DFT calculations and chemical shifts also support these conformations. Geometry optimizations for 1-12 were carried out according to density functional theory using B3LYP/6-31G(d,p) basis set and for 1 and 8 the theoretical geometrical parameters have been compared with those of single crystal measurements.  相似文献   

15.
A nor-caryophyllane derivative, artarborol, has been isolated from wormwood (Artemisia arborescens) and its stereostructure established by using a combination of chemical derivatization, NMR data, molecular modeling, and quantum-mechanical calculations. In particular, comparison of experimental 13C NMR data with a Boltzmann-weighed average of 13C NMR chemical shifts, calculated by ab initio DFT method, supported the stereochemical assignment.  相似文献   

16.
A photochromic anil, N-(3,5-di-t-butylsalicylidene)-4-amino-pyridine, has been studied by single-crystal X-ray diffraction, multinuclear magic-angle spinning NMR, and first-principles density functional theory (DFT) calculations. Interpretation of the solid-state NMR data on the basis of calculated chemical shifts confirms the structure is primarily composed of molecules in the ground-state enol tautomer, whereas thermally activated cis-keto and photoisomerised trans-keto states exist as low-level defects with populations that are too low to detect experimentally. Variable temperature 13C NMR data reveal evidence for solid-state dynamics, which is found to be associated with fast rotational motion of t-butyl groups and 180° flips of the pyridine ring, contrasting the time-averaged structure obtained by X-ray diffraction. Comparison of calculated chemical shifts for the full crystal structure and an isolated molecule also reveals evidence for an intermolecular hydrogen bond involving the pyridine ring and an adjacent imine carbon, which facilitates the flipping motion. The DFT calculations also reveal that the molecular conformation in the crystal structure is very close to the energetic minimum for an isolated molecule, indicating that the ring dynamics arise as a result of considerable steric freedom of the pyridine ring and which also allows the molecule to adopt a favourable conformation for photochromism.  相似文献   

17.
The isotopic enrichment of nucleic acids with nitrogen-15 is often carried out by solid-phase synthesis of oligonucleotides using phosphoramidite precursors that are synthetically demanding and expensive. These synthetic challenges, combined with the overlap of chemical shifts, explain the lag of nitrogen-15 NMR studies of nucleic acids behind those of proteins. For the structural characterization of DNA and RNA-related systems, new NMR methods that exploit the naturally occurring 99.9 % abundant nitrogen-14 isotope are therefore highly desirable. In this study, we have investigated nitrogen-14 spectra of self-assembled quartets based on the nucleobase guanine in the solid state by means of magic-angle spinning NMR spectroscopy. The network of dipolar proton–nitrogen couplings between neighboring stacked purine units is probed by 2D spectra based on 1H→14N→1H double cross-polarization. Interplane dipolar contacts are identified between the stacked G quartets. The assignment is supported by density functional theory (DFT) calculations of the anisotropic chemical shifts and quadrupolar parameters. The experimental spectra are fully consistent with internuclear distances obtained in silico. Averaging of chemical shifts due to internal motions can be interpreted by semiempirical calculations. This method can easily be extended to synthetic G quartets based on nucleobase or nucleoside analogs and potentially to oligonucleotides.  相似文献   

18.
NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.  相似文献   

19.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

20.
The self-assembled supramolecular host [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can encapsulate cationic guest molecules within its hydrophobic cavity and catalyze the chemical transformations of bound guests. The cavity of host 1 is lined with aromatic naphthalene groups, which create a magnetically shielded interior environment, resulting in upfield shifted (1-3 ppm) NMR resonances for encapsulated guest molecules. Using gauge independent atomic orbital (GIAO) DFT computations, we show that (1)H NMR chemical shifts for guests encapsulated in 1 can be efficiently and accurately calculated and that valuable structural information is obtained by comparing calculated and experimental chemical shifts. The (1)H NMR chemical shift calculations are used to map the magnetic environment of the interior of 1, discriminate between different host-guest geometries, and explain the unexpected downfield chemical shift observed for a particular guest molecule interacting with host 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号