首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multicolor photoluminescent graphene quantum dots (GQDs) with a uniform size of ~60 nm diameter and 2-3 nm thickness were prepared by using unsubstituted hexa-peri-hexabenzocoronene as the carbon source. This result offers a new strategy to fabricate monodispersed GQDs with well-defined morphology.  相似文献   

2.
以绿色、简单、成本低的球磨方法制备的石墨烯为碳源,采用一步水热法成功制备了分散性好、尺寸分布均一、平均直径为(4.80 ± 0.20) nm、厚度为1~3层石墨烯烯量子点.分别采用高分辨透射电镜、原子力显微镜、傅里叶变换红外光谱、X射线光电子能谱、紫外-可见吸收光谱、荧光光谱等对石墨烯量子点进行形貌、结构以及荧光性能的表征. 合成的石墨烯量子点可用于Fe.3+的非标记、特异性检测,检测线性范围为2.0×10.-6~7.0×10.-4 mol/L,检出限为1.8×10.-6 mol/L(S/N=3),同时对检测机理进行了推断,证明此石墨烯量子点用于自来水中Fe.3+的检测的可行性;基于其低毒性和优良的生物相容性,所制备的石墨烯量子点可应用于细胞成像研究.本研究为碳纳米材料的制备提供了一种新途径,也为石墨烯量子点在生化分析、成像等方面的研究奠定了基础.  相似文献   

3.
High-quality graphene quantum dots (GQDs) were prepared through a facile route of microwave-assisted one-step mild oxidation of cheap deoiled asphalt (DOA). The as-prepared DOA-derived GQDs dissolved in water with a much smaller and thinner size than most of the reported GQDs, and luminesced bright green light by excitation of 365 nm. Furthermore, the GQDs possessed excellent properties of excitation-tuned fluorescence behavior with a high quantum yield up to 16.4%. In addition, the GQDs showed amphipathic properties and could significantly reduce the interfacial tension, which give them great potential as surfactants for asphalt emulsion.  相似文献   

4.
Graphene quantum dots (GQDs) have received considerable attention for their potential applications in the development of novel optoelectronic materials. In the generation of optoelectronic devices, the development of GQDs that are regulated in terms of their size and dimensions and are unoxidized at the sp2 surfaces is desired. GQDs functionalized with bulky Fréchet’s dendritic wedges at the GQD periphery were synthesized. The single‐layered, size‐regulated structures of the dendronized GQDs were revealed by atomic force microscopy. The edge‐functionalization of the GQDs led to white‐light emission, which is an uncommon feature.  相似文献   

5.
Highly luminescent graphitic carbon quantum dots (GQDs) are synthesized employing reverse micelles as nanoreactors. This method offers size tunability and narrow size distribution without any unpractical size separation process. Also, high quantum yields of maximum 35% at the 360 nm excitation wavelength are achieved.  相似文献   

6.
Hexagonal barium titanate (HBT) thin films were prepared on borosilicate plate substrates via sol–gel method using the dip-coating process. The structure, texture and morphology of the thin film were analyzed by X-ray diffraction, atomic force microscopy, nanoindentation technique, and transmission electron microscopy. The results showed that the thin film annealed at 700?°C crystallized with BaTiO3 hexagonal phase and traces of Ba2TiO4 (secondary phase). The nanoparticles and the RMS roughness of the sample treated at 700?°C presented high values when compared with those thermally treated at lower temperatures. The hardness and Youngs??modulus of the thin films increased with increasing in grain size, and the thin film annealed at 700?°C with crystallite size about 10?nm presented multiple “pop-in??events during nano-indentation loading curves. The annealing temperature, growth size and surface roughness were discussed in connection with the HBT mechanical properties.  相似文献   

7.
According to fractal-like theory in the heterogeneous system, a cellulase-catalyzed kinetic equation that contained two parameters (rate constant k and fractal dimension h) was deduced. The equation described directly the mathematical relationship between reducing sugar concentration and hydrolytic time, and accurately fitted the experimental data of free/immobilized cellulase at 37, 40, 44, 47, and 50?°C (R (2)?>?0.99). The fitted h value is estimated as a constant (0.6148) in these tested temperatures. The fitted k value increased with temperature increase, and the relationship agreed with Arrhenius equation (R (2)?>?0.98). The fractal-like equation could predict accurately the experimental data at low temperature 34?°C for free/immobilized cellulase and high temperature 53?°C for immobilized cellulase, but the prediction at 53?°C for free cellulase was not accurate enough due to its lower stability than immobilized cellulase. The application of fractal-like theory in cellulase kinetics is successful.  相似文献   

8.
通过酸氧化法将氧化石墨烯进一步“切割”制备石墨烯量子点(GQDs),在100℃水热条件下,用氨水处理石墨烯量子点制备得到氨基功能化石墨烯量子点(N-GQDs)。傅里叶变换红外光谱证明NH3可以有效地进攻环氧基碳和羧基碳,形成羟胺和酰胺基。原子力显微镜结果表明NH3不仅能够有助于产生更小的量子点,还对石墨烯纳米片有致孔作用。氨基功能化之后,由于C-O-C相关的n-π*跃迁受到抑制,N-GQDs发光具有更弱的激发波长依赖性,并使其荧光量子产率从0.3%提高至9.6%。时间分辨发光光谱表明,相比含氧基团,含氮基团相关的局域电子激发态具有更长的荧光寿命和更弱的发射光谱依赖性。  相似文献   

9.
Electrochemical biosensing systems coupled with graphene quantum dots (GQDs) have demonstrated suitability for cancer diagnostic strategies, particularly to identify the changes facilitating the early phases of tumorigenesis as well as to detect ultralow concentrations of biomarkers that distinguish between normal and malignant cells. GQDs, known as a novel class of zero-dimensional semiconductor nanocrystals, are tiny graphene particles arranged in a honeycomb structure with a size range of 1–50 nm. The size of these GQDs is comparable with the size of biomolecules, thereby providing an ideal platform to study biomolecules such as proteins, cells, and viruses. GQDs are a superior platform for specific and sensitive recognition of cancer biomarkers; they are highly synergistic with electrochemical sensors. This review will shed light on the recent advancements made in the field of GQD-based electrochemical sensors for early cancer detection, with the aim of highlighting the prospects for further development in cancer diagnostics.  相似文献   

10.
A group of shape memory polyurethane‐based nanocomposites containing graphene quantum dot nanoparticles (GQDs) were prepared via in‐situ polymerization method. GQD nanoparticles were synthesized by a facile and rapid microwave‐assisted method and characterized by Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction pattern, field emission scanning microscopy, transmission electron microscopy, and fluorescence analysis. Chemical structure and hydrogen bonding index (HBI[C=O]) of the nanocomposites were analyzed via FTIR spectra. The results show that the incorporation of GQDs in PU matrix reduces HBI(C=O) of nanocomposites. Crystalline structure and thermal properties of the nanocomposites were investigated by differential scanning calorimetry. As results indicate, nucleation effect of GQDs raises crystallinity content of the samples. Mechanical examinations indicate that incorporation of GQDs improves Young's modulus of the nanocomposites, while their elongation at break values are reduced. In addition, shape memory analyses reveal that the presence of GQDs in PU matrix increases the shape fixity ratios in nanocomposites.  相似文献   

11.
High-photoluminescence (PL) graphene quantum dots (GQDs) were synthesized by a simple one-pot hydrothermal process, then separated by dialysis bags of different molecular weights. Four separated GQDs of varying sizes were obtained and displayed different PL intensities. With the decreasing size of separated GQDs, the intensity of the emission peak becomes much stronger. Finally, the GQDs of the smallest size revealed the most energetic PL intensity in four separated GQDs. The PL energy of all the separated GQDs shifted slightly, supported by density functional theory calculations.  相似文献   

12.
Design and development of new photoluminescence system are much in demand for various engineering and technological applications. The present investigation focused on the influence of graphene quantum dots (GQDs) dispersion in the polyvinyl butyral (PVB) matrix. The structural and chemical interaction of GQD‐dispersed PVB composites was confirmed by X‐ray diffraction (XRD), Fourier transform infrared (FTIR), micro‐Raman spectroscopy, ultraviolet and visible (UV‐Vis), and photoluminescence (PL) techniques. Chemical interaction between the functional groups leads to PL quenching at 455 nm. Changes on crystallite size and interplanar spacing hinders on the structural properties of the nanocomposite. Raman spectroscopy reveals the decrease in D/G intensity ratio influenced by GQD loading wt% in the polymer system. The dispersion and occupied network of GQD in the PVB matrix was confirmed by optical polarizing microscopy (OPM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Effect of electrical conductivity of composites as a function of temperature has been verified. Decrease in direct bandgap as a function of GQD loading confirms the promising PL properties of the prepared composite system. Thus GQD‐derived composites may further be developed as a membrane for improved PL property.  相似文献   

13.
Cellulose nanocrystals (CNC) isolated from bleached bagasse pulp were modified with a second-generation isocyanate dendron (G2-dendron) to prepare dendronized cellulose nanocrystals (DCN). Transmission electron microscopy (TEM), elemental analysis for nitrogen, Fourier transform infrared (FTIR) and 13C magic angle spinning nuclear magnetic resonance (13C MAS NMR) proved occurrence of the modification of cellulose nanocrystals surfaces. The dendronized cellulose nanocrystals were used as templates for formation of ZnS and CdS quantum dots with uniform diameter at low temperature in water. The prepared DCN/QDs were highly soluble in water. TEM images showed that the size of the prepared quantum dots was about 5 nm in diameter. UV-Visible and fluorescence spectroscopy showed absorption and emission at wavelength values lower than that reported for bulk ZnS and CdS.  相似文献   

14.
Artificial lighting sources are one of the most important technological developments for our modern lives; the search for cost-effective and efficient luminophores is therefore crucial to a sustainable future. Graphene quantum dots (GQDs) are carbon-based nanomaterials that exhibit exceptional optical and electronic properties, making them a prime candidate for a luminophore in a light-emitting device. Nitrogen-doped GQDs fabricated from a facile top-down electrochemical exfoliation process with a nitrogen-containing electrolyte in this report showed strong photoluminescent emission at 450 nm, and electrogenerated chemiluminescence at 660 nm in the presence of benzoyl peroxide as a coreactant. When introduced into solid-state light-emitting electrochemical cells, for the first time, the GQDs displayed a broad white emission centered at 610 nm, corresponding to Commision Internationale de l'eclairage (CIE) colour coordinates of (0.38, 0.36).  相似文献   

15.
Graphene quantum dots (GQDs) have been prepared from graphene oxide (GO) and characterized by standard analytical techniques. The size of the prepared GQDs ranges from 2-10?nm. Aqueous dispersion of GQDs exhibited excitation-dependent emission behavior. Emission intensity of the aqueous dispersion found stable for the examined duration of about four months. GQDs exhibited selective recognition of Fe3+ and Cr3+ out of various common ions such as alkali, alkaline-earth and transition metal ions in aqueous medium through fluorescence quenching. The lower limit of detection of Fe3+ is 1?µM and that of Cr3+ is 4?µM.  相似文献   

16.
We describe herein an original approach for the efficient immortal ring-opening polymerization (iROP) of trimethylene carbonate (TMC) under mild conditions using dual-catalyst systems combining a discrete cationic metal complex with a tertiary amine. A series of new zinc and magnesium cationic complexes of the type [{NNO}M](+) [anion](-) ({NNO}(-) = 2,4-di-tert-butyl-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenolate; M = Zn, [anion](-) = [B(C(6)F(5))(4)](-) (2), [H(2)N-{B(C(6)F(5))(3)}(2)](-) (3), and [EtB(C(6)F(5))(3)](-) (4); M = Mg, [anion](-) = [H(2)N{B(C(6)F(5))(3)}(2)](-) (7)) have been prepared from the corresponding neutral compounds [{NNO}ZnEt] (1) and [{NNO}-Mg(nBu)] (6). Compounds 2-4 and 7 exist as free ion pairs, as revealed by (1)H, (13)C, (19)F, and (11) B?NMR spectroscopy in THF solution, and an X-ray crystallographic analysis of the bis(THF) adduct of compound 7, 7?(THF)(2). The neutral complexes 1 and 6, in combination with one equivalent or an excess of benzyl alcohol (BnOH), initiate the rapid iROP of TMC, in bulk or in toluene solution, at 45-60?°C (turnover frequency, TOF, up to 25-30,000?mol(TMC)?mol(Zn)?h(-1) for 1 and 220-240,000?mol(TMC)?mol(Mg)?h(-1) for 6), to afford H-PTMC-OBn with controlled macromolecular features. ROP reactions mediated by the cationic systems 2/BnOH and 7/BnOH proceeded much more slowly (TOF up to 500 and 3000?mol(TMC)?mol(Zn or Mg)?h(-1) at 110?°C) than those based on the parent neutral compounds 1/BnOH and 6/BnOH, respectively. Use of original dual organic/organometallic catalyst systems, obtained by adding 0.2-5?equiv of a tertiary amine such as NEt(3) to zinc cationic complexes [{NNO}Zn](+) [anion](-) (2-4), promoted high activities (TOF up to 18,300?mol(TMC)?mol(Zn)?h(-1) at 45?°C) giving H-PTMC-OBn with good control over the M(n) and M(w)/M(n) values. Variation of the nature of the anion in 2-4 did not significantly affect the performance of these catalyst systems. On the other hand, the dual magnesium-based catalyst system 7/NEt(3) proved to be poorly effective.  相似文献   

17.
ZnS hollow microspheres were synthesized by a dl ‐aspartic acid mediated hydrothermal route. dl ‐aspartic acid plays an important role as crystal growth soft template, which regulates the release of Zn2+ ions for the formation of ZnS hollow spheres. The formation of these hollow spheres was mainly attributed to an Ostwald ripening process. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), UV/Vis spectroscopy (UV), and photoluminescence (PL). The shells of the microspheres were composed of ZnS quantum dots (QDs) with the average size of 2.31 nm. The average microspheres diameter is 0.5–3.5 μm. The shell thickness of the hollow sphere is ≈?300 nm. The optical bandgap energy increased significantly compared to the bulk ZnS material due to the strong quantum confinement effect. Two strong emissions at ≈?425 nm and ≈?472 nm in the photoluminescence (PL) spectrum of ZnS hollow microspheres indicate strong quantum confinement because of the presence of QDs.  相似文献   

18.
Conducting nanofiber composed of poly(vinyl alcohol) (PVA), graphene quantum dots (GQDs) and poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared for symmetrical supercapacitor through electrospinning and electropolymerization techniques. The formation of PVA nanofibers with the addition of GQDs was excellently prepared with the average diameter of 55.66 ± 27 nm. Field emission scanning electron microscopy images revealed that cauliflower‐like structure of PEDOT was successfully coated on PVA‐GQD electrospun nanofibers. PVA‐GQD/PEDOT nanocomposite exhibited the highest specific capacitance of 291.86 F/g compared with PVA/PEDOT (220.73 F/g) and PEDOT (161.48 F/g). PVA‐GQD/PEDOT also demonstrated a high specific energy and specific power of 16.95 and 984.48 W/kg, respectively, at 2.0 A/g current density. PVA‐GQD/PEDOT exhibited the lowest resistance of charge transfer (Rct) and equivalent series resistance compared with PEDOT and PVA/PEDOT, indicating that the fast ion diffusion between the electrode and electrolyte interface. PVA‐GQD/PEDOT nanocomposite also showed an excellent stability with retention of 98% after 1000 cycles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 50–58  相似文献   

19.
We report the first pyrrole‐ring surface‐functionalized graphene quantum dots (p‐GQDs) prepared by a two‐step hydrothermal approach under microwave irradiation in an ammonia medium. The most distinct feature of the functionalized GQDs is that both the excitation and emission wavelengths fall into the visible‐light region. The p‐GQDs are excited by visible light at λex 490 nm (2.53 eV) to emit excitation‐independent photoluminescence at a maximum wavelength of λem 550 nm. This is thus far the longest emission wavelength reported for GQDs. Stable photoluminescence is achieved at pH 4–10 with an ionic strength of 1.2 mol L?1 KCl. These features make the p‐GQDs excellent probes for bio‐imaging and bio‐labeling, which is demonstrated by imaging live HeLa cells.  相似文献   

20.
Si quantum dots (Si q-dots) with a size below ~5?nm have great potential in electronics and photovoltaics and are candidate materials for down conversion of light due to their strong photoluminescence (PL) properties. Proper control of size and size distribution as well as the surface characteristics of the Si q-dots are critical for applications in order to control the PL response. Here we report on the synthesis of Si q-dots by a chemical route using potassium-naphthalide as a reducing agent. A narrow size distribution of the Si q-dots, with size in the range from 3 to 30?nm, was achieved by controlling the concentration of the reduction agent, the concentration of silicon tetrachloride (SiCl4) precursor, temperature and the reaction time. The crystallinity and the narrow size distribution of Si q-dots were demonstrated by electron microscopy and electron diffraction. The optical absorption and PL response in the blue region of the visible spectrum is reported for 3.1?±?0.6?nm octanoxy capped Si q-dots and 4.2?±?1.4?nm methoxy capped Si q-dots in 1,2-dimethoxyethane solution. A quantum efficiency of (1.63?±?0.16)?×?10?3% was detected for the octanoxy terminated Si q-dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号