首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, simple, sensitive and selective fluorometric method for the determination of nitrite has been developed. The reaction of nitrite with hydralazine in acidic medium, heated on a boiling water-bath for 15 min, produced a tetrazolo (5,1-a) phthalazine (Tetra-P). The product formed was measured at ex = 274 nm and em = 345 nm. The fluorescence intensity was valid over a nitrite concentration range 0.067–60.3 ng mL–1, with a detection limit of 0.0091 ng mL–1. The reproducibility of the proposed method was determined by running a different concentration of nitrite, 13.4, 33.5, and 46.9 ng mL–1. The % recoveries and the relative standard deviations were found to be 100.6 ± 0.9, 99.9 ± 0.5, and 99.4 ± 1.1%, respectively. The proposed method was applied successfully to the determination of nitrogen dioxide sampled from the atmosphere using the liquid droplet method. The nitrogen dioxide our wind tunnel was controlled by an NO x analyzer based on a chemiluminescence analyzer detector (CLAD 1000). A linear graph was obtained for the nitrogen dioxide in the wind tunnel vs. NO2 sampled by the liquid droplet method. The effect of interference substances in the determination showed that cations and anions did not disturb the process. The results obtained were satisfactory when compared with the reference method.  相似文献   

2.
A multi-pumping flow system for the spectrophotometric determination of nitrite and nitrate is described. The determination of nitrite is based on the Griess-Ilosvay reaction. Nitrate can be determined after its on-line reduction to nitrite using hydrazine sulphate in alkaline medium. Calibration was linear up to 3 mg NO2 L−1 with a limit of detection (3sb/S) of 0.013 mg NO2 L−1 an injection throughput of 55 injections h−1 and a repeatability (RSD) of 0.5% for the direct determination of nitrite. Two calibration graphs within the ranges 0.039–7 mg NO3 L−1 and 0.026–5 mg NO2 L−1 were run for the determination of nitrate and nitrite under reducing conditions, respectively. A limit of detection of 0.039 mg NO3 L−1 was obtained. An injection throughput of 27 injections h−1 and an RSD lower than 1.5% were achieved. The method was successfully applied to the determination of nitrite and nitrate in water samples. Correspondence: Víctor Cerdà, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa Km7.5, 07122 Palma de Mallorca, Spain  相似文献   

3.
《Analytical letters》2012,45(8):1407-1412
Abstract

A spectrophotometric method was developed to determine nitrite using safranin as color reagent. The reaction between nitrite and safranin produces a safranin-HNO2 species, which exhibits absorption peaks at 280, 349, 420(shoulder) and 610 nm. The peak at 610 nm was chosen as the analysis wavelength because nitrite ion and safranin do not present absorption bands in this region. The Lambert-Beer law was obeyed in the concentration range 7.0 × 10?6 - 5.0 × 10?5M. The effects of various ions on absorbance of the safranin-HNO2 species were studied; the nitrite analysis can be performed without interference in the presence of the ions SCN?, Br?, CH3COO?, Cl? (≤ 1.0 × 10?3 M) and NO3 ? (< 1.0 × 10?5 M). The SO4 = does not interfere even at a concentration of 0.25M.  相似文献   

4.
Second order derivative spectrophotometry was applied to the determination of nitrite and nitrate ions in bath solutions for alkaline black-oxidation of steel. The measurements were directly taken after dilution of the samples at λ = 336.4 nm for NO3 and λ = 390 nm for NO2 . The method was checked on artificial mixtures and applied to real samples containing approximately 5.5% NaNO2 and 6% NaNO3. The results agree well with those obtained by the standard manganometric method. Received: 8 July 1996 / Revised: 24 September 1996 / Accepted: 28 September 1996  相似文献   

5.
A sensitive catalytic kinetic spectrofluorimetric approach for determining ng mL−1 levels of rhodium is presented, and the possible mechanism of the catalytic reaction was investigated. The determination is based on the catalytic property of rhodium to enhance the reaction of o-vanillin salicylhydrazone (OVSH) with potassium bromate in a water-ethanol medium at pH 4.80 and 45 °C. The presence of β-cyclodextrin (β-CD) obviously sensitized the assay due to its high inclusion ability towards OVSH. Under optimized experimental conditions, fluorescence measurements of the β-CD-rhodium-KBrO3-OVSH catalytic kinetic reaction system were carried out in its fluorescent band centered at λex = 333 nm and λem = 476 nm, respectively. The calibration graph was linear over the concentration range of 0.47–100 ng mL−1 with a detection limit of 0.14 ng mL−1. The effect of interferences was discussed, and the results show that the extraction method can be used to separate rhodium from interference species such as iridium. The proposed method, applied to several synthetic mixtures containing rhodium mixed with varying amounts of metal salts, produced satisfactory results.  相似文献   

6.
A rapid, highly sensitive and selective fluorogenic method for the determination of traces of nitrite is described. It is based on the reaction of weakly fluorescent 1,3,5,7-tetramethyl-8-(3,4-diaminophenyl)-difluoroboradiaza-s-indacence (DAMBO) and nitrite in acidic aqueous solution to give 1,3,5,7-tetramethyl-8-(5-benzotriazolyl)-difluoroboradiaza-s-indacene (DAMBO-T), which is highly fluorescent. The optimum reaction conditions and other analytical parameters are investigated to enhance the sensitivity of the method. The fluorescence enhancement at 507 nm is linearly related to the concentration of nitrite in the range of 6.0 × 10−9–5.0 × 10−7 mol L−1 with a correlation coefficient of R = 0.9995 (n = 10) and a detection limit of 1.0 × 10−10 mol L−1. The R.S.D. is 1.12% (n = 10). The method is applied to the determination of nitrite in human saliva samples with the recoveries of 96. 24–105.30%. Correspondence: Ke-Jing Huang, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China  相似文献   

7.
Strongly fluorescent dipyrrinones can be prepared by bridging the pyrrole and lactam nitrogens with a carbonyl group, from reaction with N,N′-carbonyldiimidazole in the presence of a strong, non-nucleophilic base. The yellow, N,N′-carbonyl-bridged dipyrrinones typically have fluorescent quantum yields (φF) approaching 1.0. Thus, in chloroform, N,N′-bridged 9H-dipyrrinones with β-alkyl substituents: 2,3-diethyl-7,8-dimethyl has φF = 0.90 (λem = 465 nm) and 2,3-dimethyl-7,8-dimethoxy has φF = 0.84 (λem = 482 nm). In contrast, 2,3-dimethoxy-7,8-dimethyl and 2,3,7,8-tetramethoxy show red-shifted λem but with strongly reduced φF: φF = 0.10 (λem = 511 nm) and 0.08 (λem = 511 nm), respectively. Methoxy substituents on the lactam, but not the pyrrole ring act to quench the fluorescence and shift the emission and excitation wavelengths bathochromically. The first X-ray crystal structure of an N,N′-carbonyl-bridged dipyrrinone was obtained from 7,8-dimethoxy-2,3-dimethyl-10H-dipyrrin-1-one. Correspondence: David A. Lightner, Department of Chemistry, University of Nevada, Reno, Nevada 89557-0020, USA.  相似文献   

8.
The B3LYP density functional method using the extended basis set 6-311++G(3df) was used to calculate the stationary points along the reaction coordinate 2NO + O2 → 2NO2. The results of the calculation were compared with the reported physicochemical characteristics of this reaction. The origin of the barrierless activation of the oxygen molecule and driving force for the spontaneous oxidation of NO were examined.  相似文献   

9.
 Three simple and sensitive colorimetric methods (A–C) for the determination of melatonin in bulk samples and in pharmaceutical formulations are described. They are based on the formation of coloured species by reaction of ninhydrin with the drug (method A, λmax 397 nm) by oxidation of the indol moiety in melatonin with potassium persulphate (method B, λmax 450 nm) or by reduction of osmium (VIII) (method C, λmax 516 nm). Regression analysis of Beer-Lambert plots showed good correlations in concentration ranges between 0.8–14.2, 70.0–140.0 and 2.0–40.0 μg/mL for methods A, B and C, respectively. The molar absorptivity, Sandell sensitivity and detection limit were calculated. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The validity of the proposed methods was tested by analysing pharmaceutical formulations containing melatonin. The relative standard deviations were ≤ 0.95% with recoveries 99.0–101.33%. Received October 20, 1999. Revision February 10, 1999.  相似文献   

10.
A carbon past electrode modified with [Mn(H2O)(N3)(NO3)(pyterpy)], ( \textpyterpy = 4¢- ( 4 - \textpyridyl ) - 2,2¢:\text6¢,\text2¢¢- \textterpyridine ) \left( {{\text{pyterpy}} = 4\prime - \left( {4 - {\text{pyridyl}}} \right) - 2,2\prime:{\text{6}}\prime,{\text{2}}\prime\prime - {\text{terpyridine}}} \right) complex have been applied to the electrocatalytic oxidation of nitrite which reduced the overpotential by about 120 mV with obviously increasing the current response. Relative standard deviations for nitrite determination was less than 2.0%, and nitrite can be determined in the ranges of 5.00 × 10−6 to 1.55 × 10−2 mol L−1, with a detection limit of 8 × 10−7 mol L−1. The treatment of the voltammetric data showed that it is a pure diffusion-controlled reaction, which involves one electron in the rate-determining step. The rate constant k′, transfer coefficient α for the catalytic reaction, and diffusion coefficient of nitrite in the solution, D, were found to be 1.4 × 10−2, 0.56× 10−6, and 7.99 × 10−6 cm2 s−1, respectively. The mechanism for the interaction of nitrite with the Mn(II) complex modified carbon past electrode is proposed. This work provides a simple and easy approach to detection of nitrite ion. The modified electrode indicated reproducible behavior, anti-fouling properties, and stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   

11.
The sedimentation kinetics of an ochre suspension in salt (NaCl)-containing aqueous media was studied in the presence of ionogenic (anionic, A, and cationic, C) acrylamide copolymers with high molecular weight (M > 2 × 106) using a VT–0.5 torsion balance. The ionic strength of the dispersion medium varied in the wide range from 0.001 N to 0.4 N. The flocculation proceeded predominantly by a `bridge' mechanism, and the fraction of macromolecules inactive in the acts of floccule formation was significantly higher for C copolymer as compared with A copolymer. A drastic fall in the flocculating activities of A and C copolymers when passing from salt-free to salt-containing media is caused mainly by two following events: 1. The change in the conformational state of macromolecules, primarily, in their effective dimensions 2. The participation of a certain part of electrolyte in the formation and modification of an electrical double layer around disperse phase particles After introducing binary compositions of A and C flocculants into salt-containing media their resultant flocculating effect depends on the introduction mode of polymeric components. A strong difference in the magnitudes of the flocculating effect for A and C copolymers is observed in water. In the region of high ionic strengths (0.1–0.4 N) this difference becomes far less distinct. The flocculating activities of A and C copolymers were compared when introduced as the first (λA and λC) and the second (λA and λC ) additives. It was shown that λAA >1 and λCC >1. Such relationship between λA and λA , λC and λC indicates that selective interactions between A and C copolymers play an essential role in the flocculation processes. The last statement was indirectly confirmed in the present work by the data of electrochemical and viscosimetric studies. When using C copolymer as the second additive in the region of low ionic strengths its main function undergoes reversal, and the copolymer begins to operate not as a flocculant, but as a stabilizer of disperse phase particles (λC < 0). Received: 14 April 2000 Accepted: 4 August 2000  相似文献   

12.
A flow injection–solid-phase spectroscopy (FI-SPS) system implemented with photochemically induced fluorescence (PIF) is described for the rapid and very sensitive determination of reserpine in biological fluids and pharmaceutical formulations. An intensively fluorescent photoproduct is in-line generated, retained on C18 silica gel in the detection area and monitored at 394/489 nm (λ ex/λ em). After the establishment of the appropriate working variables, the system is calibrated at two different injection volumes, 100 and 800 μL, achieving detection limits of 0.33 and 0.05 ng mL−1, respectively. The RSD for reserpine at 2 ng mL−1 (800 μL) was 1.5% (n = 10). The sampling rates were 46 and 43 h−1 for each injection volume, respectively. The potential interference of some common species coexisting with reserpine in the analysed samples was also studied. The procedure was successfully applied to commercial formulations, urine and serum without any previous treatment of samples. Recoveries ranged from 94.9 to 100.2%.  相似文献   

13.
Enzyme-linked immunosorbent assay (ELISA), horseradish peroxidase (HRP)-catalyzed fluorescent reaction, and oxalate chemiluminescence imaging analysis have been combined to develop a sensitive, simple, and rapid method for analysis of interferon alpha (α-IFN) in human serum samples. A typical “sandwich type” immunoassay was used. Reaction of o-phenylenediamine (OPD) with hydrogen peroxide (H2O2), catalyzed by HRP, produced 2,3-diaminophenazine (PDA), which was detected by chemiluminescence imaging analysis with the bis(2,4,6-trichlorophenyl)oxalate (TCPO)–H2O2–glyoxaline–PDA chemiluminescent system. The TCPO chemiluminescent imaging system is more sensitive and the chemiluminescence quantum yield is at least five times higher than for the luminol–H2O2–HRP–PIP (p-iodophenol) chemiluminescent imaging system. The results showed there was a very good linear correlation between response and amount of α-IFN in the range 1.3–156.0 pg mL−1 (R = 0.9991) and the detection limit was 0.8 pg mL−1 (S/N=3). The relative standard deviation (n = 9) was 4.7%. The proposed method has been used for successful analysis of the amount of α-IFN in human serum. The results obtained compared well with those obtained by conventional colorimetric ELISA and luminol chemiluminescent ELISA. Figure Procedures of the proposed method  相似文献   

14.
Pyrene-tetramethylpiperidinyl (Pyr-Tempo) as a spin label fluorescent probe for iron(II) was synthesized. It exhibited weak fluorescence (λexcem = 346/399 nm) in aqueous solution due to an intramolecular quenching pathway. A method for determination of iron(II) was proposed based on the fluorescence enhancement of the probe in the presence of iron(II) in acidic medium. Under optimum conditions, the fluorescence enhancement of Pyr-Tempo is linearly proportional to the iron(II) concentration range of 6.0 × 10−8 to 9.6 × 10−6 mol L−1 with a detection limit of 8.0 × 10−9 mol L−1. The relative standard deviation (RSD) of six replicate measurements is 1.95% for 3.0 × 10−7 mol L−1 iron(II). The developed spin label fluorescence probe is found to be rapidly and sensitively responsive to iron(II) with high selectivity compared to existing fluorescence methods. The proposed method was successfully applied to iron(II) detection in five real samples with satisfactory results obtained by manual UV/Vis spectrophotometry (standard method) with 1,10-phenanthroline.  相似文献   

15.
Polyurethane foam (PUF) has been suggested as a solid polymeric reagent for determination of nitrite. The determination is based on the diazotization of end toluidine groups of PUF with nitrite in acidic medium followed by coupling of polymeric diazonium cation with 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline. The intensely colored polymeric azodye formed in this reaction can be used as a convenient analytic form for the determination of nitrite by diffuse reflectance spectroscopy (c min = 0.7 ng mL−1). The possibility of using a desktop scanner, digital camera, and computer data processing for the numerical evaluation of the color intensity of the polymeric azodye has been investigated. A scanner and digital camera can be used for determination of nitrite with the same sensitivity and reproducibility as with diffuse reflectance spectroscopy. The approach developed was applied for determination of nitrite in river water and human exhaled breath condensate.  相似文献   

16.
Two kinds of Ca2+-regulated photoprotein obelin with altered color of bioluminescence were obtained by active-center amino acid substitution. The mutant W92F-H22E emits violet light (λmax = 390 nm) and the mutant Y139F emits greenish light (λ max = 498 nm), with small spectral overlap, both display high activity and stability and thus may be used as reporters. For demonstration, the mutants were applied in dual-color simultaneous immunoassay of two gonadotropic hormones—follicle-stimulating hormone and luteinizing hormone. Bioluminescence of the reporters was simultaneously triggered by single injection of Ca2+ solution, divided using band-pass optical filters and measured with a two-channel photometer. The sensitivity of simultaneous bioluminescence assay was close to that of a separate radioimmunoassay. Figure Two kinds of Ca2+-regulated photoprotein obelin with altered color of bioluminescence were obtained and applied in dual-color simultaneous immunoassay of two gonadotropic hormones.  相似文献   

17.
A p-duroquinone (tetramethyl-p-benzoquinone) modified carbon paste electrode (DMCPE) was employed to study the electrocatalytic reduction of nitrite in aqueous solutions using cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry (DPV). It has found that under an optimum condition (pH 1.00), the reduction of nitrite at the surface of DMCPE occurs at a potential of about 660 mV less negative than that of an unmodified carbon paste electrode (CPE). The catalytic rate constant, kh, based on Andrieux and Saveant theoretical model was calculated as for scan rate 10 mV s-1. Also, the apparent diffusion coefficient, D app, was found as 2.5 × 10–10 and 3.61 × 10–5 cm2 s-1 for p-duroquinone in carbon paste matrix and nitrite in aqueous buffered solution, respectively. The values for αnα were estimated to be −0.65 and −0.19 for the reduction of nitrite at the surface of DMCPE and CPE, respectively. The electrocatalytic reduction peak currents showed a linear dependence on the nitrite concentration, and a linear analytical curve was obtained in the ranges of 5.0 × 10–5 M to 8.0 × 10–3 M and 6.0 × 10–6 M to 8.0 × 10–4 M of nitrite concentration with CV and DPV methods, respectively. The detection limits (2σ) were determined as 2.5 × 10–5 M and 4.3 × 10–6 M by CV and DPV methods. This method was also applied as a simple, selective and precise method for determination of nitrite in real samples (the weak liquor from the wood and paper factory of Mazandaran province in Iran) by using a standard addition method.  相似文献   

18.
 Derivative spectrophotometry was applied for the simultaneous determination of amoxycillin and clavulanic acid in pharmaceutical preparations: “Augmentin” inj. and tablets and “Amoksiklav” drops and tablets, in solutions after hydrolysis with sodium hydroxide. As the absorption spectra overlap strongly (amoxycillin λmax = 247 nm and 290 nm, clavulanic acid λmax = 258 nm) the first and the second derivative spectrophotometric procedure was elaborated for their determination. Amoxycillin was determined at λ = 257.9 nm (1-st derivative spectra) or λ = 273 nm (2-nd derivative) while clavulanic acid at λ = 280.3 nm (1-st derivative) or λ = 285 nm (2-nd derivative spectra). The Beer’s law is obeyed in the range of 0.004–0.04 mg/ml for amoxycillin and 0.002–0.02 mg/ml for clavulanic acid. Received December 6, 1999. Revision August 1, 2000.  相似文献   

19.
An enzymatic method for determining L-malic acid in wine based on an L-malate sensing layer with nicotinamide adenine dinucleotide (NAD+), L-malate dehydrogenase (L-MDH) and diaphorase (DI), immobilized by sol-gel technology, was constructed and evaluated. The sol-gel glass was prepared with tetramethoxysilane (TMOS), water and HCl. L-MDH catalyzes the reaction between L-malate and NAD+, producing NADH, whose fluorescence (λ exc = 340 nm, λ em = 430 nm) could be directly related to the amount of L-malate. NADH is converted to NAD+ by applying hexacyanoferrate(III) as oxidant in the presence of DI. Some parameters affecting sol-gel encapsulation and the pH of the enzymatic reaction were studied. The sensing layer has a dynamic range of 0.1–1.0 g/L of L-malate and a long-term storage stability of 25 days. It exhibits acceptable reproducibility [s r(%)≈10] and allows six regenerations. The content of L-malic acid was determined for different types of wine, and polyvinylpolypyrrolidone (PVPP) was used as a bleaching agent with red wine. The results obtained for the wine samples using the sensing layer are comparable to those obtained from a reference method based on UV-vis molecular absorption spectrometry, if the matrix effect is corrected for.  相似文献   

20.
A new high-performance ion chromatography assay for organic and inorganic nitrogen analysis has been proposed and examined. In the devised protocol, inorganic sample constituents were measured after ultrasonically assisted water extraction. The amine and amide nitrogen content was assessed after modified Kjeldahl digestion and determined as NH4+, and the total nitrogen content was quantified as NO3 after microwave-facilitated digestion. Finally, the nitro, azo, azoxy nitrogen was calculated by comparison of the total nitrogen content and all measured nitrogen species. The detection limits of the measured ions were 2.0, 0.82 and 0.17 mg L−1 for nitrate, nitrite and ammonium, respectively. For samples of potatoes, the average shares of the nitrogen species found in the total nitrogen content were: 0.83% of nitrate nitrogen, <0.03% of nitrite nitrogen, 2.1% of ammonium nitrogen, 71% of nitro, azo, azoxy nitrogen, and 26% of amine, amide nitrogen. We expect the method to be applicable to different vegetable samples. The quality of the results obtained was verified by analyzing certified reference material and comparing to another analytical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号