首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate a chemostat model in which the growth rate is given by a Monod expression with a variable yield coefficient. This model has been investigated by previous researchers using numerical integration. We combine analytical results with path-following methods. The conditions for washout to occur are found. When washout does not occur we establish the conditions under which the reactor performance is maximised at either a finite or infinite residence time. We also determine the parameter region in which oscillations may be generated in the reactor, which was the primary feature of interest to earlier workers on this problem.  相似文献   

2.
In this paper, the long time behavior of a stochastic model is studied when the Contois growth rate is employed in reactor cascades. We first investigate the existence and uniqueness of the positive solution of the model. Then it is followed by the stochastic stability analysis of the equilibria, which is based on the so-called Lyapunov function. Our study shows that under certain condition, both the washout and non-washout equilibria are stochastically stable. At the end of this paper, numerical simulations are carried out to illustrate our theoretical results.  相似文献   

3.
In the modelling of the continuous flow bioreactor, due to uncertainties in the environment the growth rate parameter is under perturbation of white noise, which results in a mathematical model governed by a set of stochastic differential equations. In this paper, assume the Contois growth rate is used and then we first show that the stochastic model has always a unique positive solution. Then long time behavior of the model is studied. Our study shows that both the washout and non-washout equilibria are stochastically stable. At the end, we carry out some numerical simulation, which supports our theoretical conclusion well. Also, by the quantities introduced in the last section, both residence time and intensity of the noise have significant effect on the performance of the reactor.  相似文献   

4.
The global dynamics of a deterministic model in wastewater treatment has been investigated in Zhang (J Math Chem 50:2239–2247, 2012). The stochastic version, which can be used for continuous flow bioreactor and membrane reactor is presented in this study. Precisely, we assume there is some uncertainty in the part describing the recycle, which results in a set of stochastic differential equations with white noise. We first show that the stochastic model has always a unique positive solution. Then long time behavior of the model is studied. Our study shows that both the washout equilibrium and non-washout equilibrium are stochastically stable. At the end, we carry out some numerical simulations, which support our theoretical conclusions well.  相似文献   

5.
Anaerobic treatment of low-strength brewery wastewater, with influent total chemical oxygen demand (COD) (CODin) concentrations ranging from 550 to 825 mg/L, was investigated in a pilot-scale 225.5-L expanded granular sludge bed (EGSB) reactor. In an experiment in which the temperature was lowered stepwise from 30 to 12 degrees C, the COD removal efficiency decreased from 73 to 35%, at organic loading rates (OLR) of 11-16.5 g COD/L/d. The applied hydraulic retention time (HRT) and liquid upflow velocity (Vup) were 1.2 h and 5.8 m/h, respectively. Under these conditions, the acidified fraction of the CODin varied from 45 to 90%. In addition to the expected drop in reactor performance, problems with sludge retention were also observed. In a subsequent experiment set at 20 degrees C, COD removal efficiencies exceeding 80% were obtained at an OLR up to 12.6 g COD/L/d, with CODin between 630 and 715 mg/L. The values of HRT and Vup applied were 2.1-1.2 h, and 4.4-7.2 m/h, respectively. The acidified fraction of the CODin was above 90%, but sludge washout was not significant. These results indicate that the EGSB potentials can be further explored for the anaerobic treatment of low-strength brewery wastewater, even at lower temperatures.  相似文献   

6.
The enhancement of ethylbenzene conversion by further displacement of the thermodynamic equilibrium via the influence of the dual-functionality of a well-mixed catalyst pattern has been investigated. A rigorous steady state mathematical model based on the dusty gas model is implemented for the simulation. The simulation results reveal that the introduction of the concept of the reaction coupling has significant effect on the displacement of the thermodynamic equilibrium and considerable enhancement of simultaneous production of styrene and cyclohexane. Almost 100% conversion of the ethylbenzene and benzene is achieved through the application of this approach. It is also found that considerable decrease in the reactor length is achieved by employing a reactor catalyst bed with different bed compositions. Effective operating regions with optimal conditions are observed. An effective reactor length criterion is used to evaluate the performance of the reactor under these optimal conditions. The effective reactor length is found to be sensitive and favored by high feed temperature and pressure. The sensitivity analysis shows that the key parameters of feed temperature, pressure, and the bed composition play an important role on the reactor performance. The results also show that almost 100% conversion of ethylbenzene and benzene at low temperature and shorter reactor length can be achieved by maintaining the reactor beds at different temperatures. This temperature switching policy may result in appreciable energy saving. Moreover, operating the reactor at low temperature protect the catalyst from the excessive temperatures which have destructive effects on the catalysts and the mechanical stability of the reactors. Also, the low temperature operation has significant contribution to the reduction of the operating cost.  相似文献   

7.
邹昀  童张法  刘琨  冯献社 《催化学报》2010,26(8):999-1005
 建立了一个间歇反应器内酯化反应与渗透汽化集成过程的数学模型, 用于描述反应和脱水同时进行的过程. 该模型考虑了反应体系中所有组分的渗透量影响以及混合物的非理想热力学行为. 选择乙酸和正丁醇生成醋酸丁酯的酯化反应与 PVA 膜渗透汽化集成过程为研究体系, 将模型结果与文献中已报道的实验数据进行对比, 验证了该模型的有效性. 结果表明, 采用渗透汽化脱除酯化反应的水分将提高酯的产率. 对温度、反应物初始比、膜面积与反应体积比以及催化剂浓度几种操作条件对集成过程性能影响进行了参数的分析. 根据结果讨论得到该膜过程与反应集成过程的优化操作条件.  相似文献   

8.
In high-performance liquid chromatography, use of any post-column reactor invariably involves a compromise between the conditions needed to obtain complete reaction and avoidance of excessive dispersion by band broadening in the reactor. Flow rate and the reactor geometry interact to establish the final chromatographic performance. Based on the flow-rate dependence of the peak area and peak height, post-column detectors constitute a distinct class of detectors which differ from mass-flow and concentrations-sensitive detectors such as the flame ionization and absorbance detector, respectively. The concept of reactor length optimization is developed for first-order chemical reactions in a post-column detector. The findings are applicable to both chromatographic and flow-injection systems.  相似文献   

9.
Pintar A  Batista J  Levec J 《The Analyst》2002,127(11):1535-1540
The performance of new FTIR-based monitoring technology to representatively determine reaction kinetics has been demonstrated on an example of homogeneously catalyzed liquid-phase sucrose hydrolysis to fructose and glucose. The reaction kinetics were investigated by using the ReactIR 1000 reaction analysis system, which enables determination of the component concentration from its characteristic FTIR spectrum. During the sucrose inversion, the ReactIR 1000 instrument connected to a computer controlled standard glass batch reactor provided the required operating conditions and information about the component concentration in real-time. We have studied the influence of hydrogen ion concentration, temperature and initial concentration of sucrose on the sucrose disappearance rate. It was found out that the inversion of sucrose is an irreversible reaction, which is not affected by the formation of fructose and glucose in the liquid-phase. Then, the parameters of the kinetic model (i.e., reaction rate constant and activation energy) were calculated. A comparison of the model output and the measured data showed that the kinetics of the sucrose inversion could be well described by means of the pseudo first-order kinetic model. Finally, the method of determining the kinetic model by FTIR spectroscopy was verified by comparing the results obtained in the batch reactor with the results obtained in the continuously stirred tank reactor.  相似文献   

10.
We report herein the high yield synthesis of Cu2O spheres displaying well-defined shapes and monodisperse sizes that could be employed as the source of highly catalytic active Cu(I) species towards click reactions between several of alkynes and azides to produce a variety of 1,2,3-triazoles under ligand-free and ambient conditions (in an open reactor). The utilization of Cu2O spheres enabled superior performance as compared to a conventional protocol in which CuSO4 is employed in combination with sodium ascorbate as the catalyst system. In addition, the compounds were obtained in synthetically useful yields, and seven of them have not been previously reported. We believe the results reported herein shed new insights into the optimization of activity and versatility of click reactions towards the synthesis of target molecules in environmentally friendly conditions.  相似文献   

11.
以石英毛细管作为酶固定化的载体, 在毛细管内壁上逐步合成树枝形大分子聚酰胺-胺(PAMAM), 再通过交联剂戊二醛将胰蛋白酶直接键合到该大分子的末端氨基上, 并对酶固定化条件进行了优化, 制备了多层酶反应器. 利用该酶反应器对马心细胞色素C等蛋白质进行了酶切, 并对酶切的条件进行了优化. 实验结果表明, 该固定化酶反应器具有较高的酶切效率、良好的重现性和稳定性, 可用于蛋白质组学的研究.  相似文献   

12.
对无机膜控氧反应器的优化进行了探讨,提出优化依据,并在自制的均布膜反应器及非均布膜反应器中,进行丁烯氧化脱氢制丁二烯反应的研究,系统地考察了反应温度、进料量、氧/烃比对丁烯转化率及丁二烯选择性的影响,结果表明,在相同的反应条件下,非均布膜反应器中的反应效果优于均布膜反应器中的反应效果,建立了模拟膜反应器的数学模型,其计算结果与实验数据符合良好。  相似文献   

13.
R. Leboda 《Chromatographia》1981,14(9):524-528
Summary The surface properties of complex adsorbents prepared through the pyrolysis of dichloromethane on the surface of silica gel were investigated. The reaction was carried out in a specially constructed reactor at 400–500°C. The construction and performance of the reactor are described. The modification of the silica gel surface by pyrogenic carbon results in its chemical but not energetical homogeneity. Such adsorbents usually show strong adsorptive properties which limits their use in chromatography. A simple method of homogenizing the porous structure and energetic properties of the adsorptive centers of such adsorbents is presented. The method consists of an additional pyrolysis of an alcohol or other substances on the surface of the carbon-silica adsorbent. Such reactions were carried out under both static and dynamic conditions. The properties of the modified adsorbent depend on the reaction conditions and on the type of the additionally pyrolysed substance.  相似文献   

14.
A simple experimental device has been assembled with the aim of increasing students understanding of multiphase reactors and to highlight the importance of economic considerations in real chemical engineering problems. The multiphase reactor studied is an activated sludge reactor. In this type of reactor, organic matter and nitrogen substrates, which are contained in wastewater, are oxidized by solid bacterial groups that employ oxygen. Gas dispersion is a factor of critical importance in the operating performance and cost of every multiphase reactor. In the work covered here, students determine the influence of this factor on the assembly while considering that energy consumption (economic cost) depends on both the type of aerator used and the operational conditions for a given aerator. A theoretical model is proposed that allows the interpretation of the results based on the assumptions that gas absorption and biochemical reactions are the limiting steps. Experimental data are fitted to this model, and the parameters obtained allow comparison of the behavior of each type of aerator and also provide an understanding of the process.  相似文献   

15.
Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.  相似文献   

16.
A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (N(obs)) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte's retention factor, k', is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (a(r)) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of a(r) become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 microm radius is suitable for all columns smaller than 150 microm (radius) packed with 2-5 microm particles. For 1 microm packing particles, only columns smaller than 42.5 microm (radius) can be used and the reactor radius needs to be 5 microm.  相似文献   

17.
The stability and efficiency of an anaerobic reactor containing biomass immobilized on polyurethane foam were assessed. The reactor with mechanical stirring of 500 rpm and maintained at 30+/-1 degrees C treated synthetic wastewater with a concentration of approx 500 mg of chemical oxygen demand/L and was fed with different influent volumes and cycle times maintaining organic load. Operation was in batch mode with renewal of only part of the volume of wastewater to be treated; that is reactor discharge was not complete, but partial. The main operational characteristic investigated was the ratio of the volume of wastewater fed per cycle (VA) to the volume of wastewater in the reactor (VA) maintaining the same volumetric organic load. This way, operating flexibility could be verified in relation to the volume of treated wastewater at each cycle and the cycle time for the same organic load. The results indicated that the reactor was able to operate with different VA/Vu ratios with no significant loss in performance, thus allowing increased operational flexibility. For conditions in which VA was >or=50% of VA, removal efficiencies of filtered and nonfiltered organic matter were about 84 and 79%, respectively, whereas at conditions of higher initial influent dilution, these efficiencies were slightly lower, about 80 and 74%, respectively. At higher initial influent dilutions, it became difficult to maintain a constant reactor medium volume, owing to a high formation rate of viscous polymer-like material, likely of microbiologic origin.  相似文献   

18.
A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand [COD] removal efficiency, low volatile fatty acids concentration in the effluent, alkalinity ratio above 0.7, biogas production above 0.1 Nm3/kg of CODremoved). Removal efficiencies up to 90% were obtained in the anaerobic steps at a hydraulic retention time of 6 + 4 h (80% removal in the first step). Fecal coliform removal in the whole system was 99.9999% (99.94% in anaerobic steps and 99.98% in WSPs). COD balances over UASB reactors are provided. A minimum set of data necessary to build COD balances is proposed. Intermittent sludge washout was detected in the reactors with the COD balances. Sludge washout from single-step UASB reactors should be monitored and minimized in order to ensure constant compliance with discharge standards, especially when no posttreatment is provided. The system combined high COD and fecal coliform removal efficiency with an extremely low effluent concentration, complying with discharge standards, and making it an attractive option for sewage treatment in subtropical regions.  相似文献   

19.
The construction of a new post-column photochemical reactor with quartz flow cells in series for high-performance liquid chromatography (HPLC) is described. The performance of the new reactor was compared with a conventional open tubular PTFE coil reactor. The sensitivity, accuracy and precision obtained with both reactors are comparable. The new reactor has the obvious advantages of smaller cell volume as well as inertness and resistance to not only light and heat produced by the UV lamp, but also to organic solvents in the mobile phases, which results in greatly improved durability, reduced peak broadening and shorter chromatographic run times. Application of the new reactor to the fluorescence detection of DU-6859a, a new fluoroquinolone antimicrobial agent, in human serum is reported.  相似文献   

20.
A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5wt%Na2WO4-2wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3 /FeCrAl metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing O2.The reaction performance of oxidative coupling of methane(OCM) in the dual-bed reactor system is evaluated.The effects of the reaction parameters such as feed CH 4 /O 2 ratio,reaction temperature and side tube feed O2 flowrate on the catalytic performance are investigated.The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM.CH4 conversion of 33.2%,C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained,which have been increased by 6.4%,4.1% and 5.5%,respectively,as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%,31.9% and 17.7%,respectively,as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3 /FeCrAl metal-based monolithic catalyst in a single-bed reactor.The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号