首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyethersulfone (PES) has been widely used in membrane technology and used to purify water in water treatments application or as a dialyzer to purify blood in hemodialysis. In this work, PES was chemically modified by separately grafting two biomolecules, 4‐aminobenzenesulfonamide (ABS), and 4‐amino‐N‐(5‐methylisoxazol‐3‐yl)benzenesulfonamide (AMBS), on PES backbone, and these modified membranes were blended to unmodified PES, in 1:1 ratio, in order to obtain PES‐b‐PES‐ABS and PES‐b‐PES‐AMBS membranes. The first aim of this study is to measure the anticoagulant properties of the modified membrane by measuring the activated partial thromboplastin time (APTT) and prothrombin time (PT). The second aim of the study is to evaluate the antifouling properties of the modified PES membranes by examining its antimicrobial activity against two Gram‐negative bacteria, which are Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli); two Gram‐positive bacteria, which are Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus); and a fungus, which is Candida albicans (C. albicans). The results showed that grafting of ABS and AMBS improved overall the hydrophilicity properties of the modified PES membranes. PES‐b‐PES‐ABS membranes showed better anticoagulant properties with 13 seconds for PT and 38 seconds for APPT, in comparison with the control sample (pure plasma), which showed 12 seconds for PT and 30 seconds for APPT. For antimicrobial tests, both PES‐b‐PES‐ABS and PES‐b‐PES‐AMBS membranes did not show any antibacterial activity, but when zinc oxide (ZnO) nanoparticles were added to the modified PES membranes in concentrations between 3% to 5% w/w, PES‐b‐PES‐ABS‐ZnO (M‐4 and M‐5), and PES‐b‐PES‐AMBS‐ZnO (M‐8 and M‐9) nanocomposite membranes showed antibacterial activity against P. aeruginosa and S. aureus.  相似文献   

2.
A series of highly proton conductive electrolyte membranes with improved methanol barrier properties are prepared from polyallylamine hydrochloride (PAH) and polystyrene sulfonic acid (PSS) including salt by Layer-by-Layer (LbL) method. The effects of added salt type (NaCl, MgCl2) and salt concentration (1.0 M, 0.1 M) on proton conductivity (σ) and methanol barrier properties of the LbL self-assembled composite membranes are discussed in terms of controlled layer thickness and charge density. Furthermore, the influences of ion type in the multilayered composite membranes are studied in conjunction with physicochemical and thermal properties.The deposition of the self-assembly of PAH/PSS film on Nafion is followed by UV–Vis spectroscopy and it is observed that the polyelectrolyte layers growth on both sides of Nafion membrane regularly. (PAH/PSS)5–Na+ and (PAH/PSS)5–H+ with 1.0 M NaCl exhibits 49.6 and 27.8% reduction in lower methanol permittivity in comparison with the pristine Nafion®117, respectively, while the proton conductivities are 12.97 and 74.69 mS cm−1. Promisingly, it is found that the membrane selectivity values (Φ) of all multilayered membranes in H+ form are much higher than that of salt form (Na+ and Mg2+) and perfluorosulfonated ionomers reported in the literature. Also, we find out that the use of polyelectrolytes with high charge density causes a further improvement in proton conductivity and methanol barrier properties simultaneously. These encouraging results indicate that upon a suitable choice of LbL deposition conditions, composite membranes exhibiting both high proton conductivity and improved methanol barrier properties can be tailored for fuel cells.  相似文献   

3.
Palladium complexation in concentrated nitric acid solutions was studied by UV/Vis absorption spectrophotometry. The ionic strength of the solutions was fixed to I = 1, 3, or 5 mol dm−3 (M) by mixing of HNO3 and HClO4. The major palladium species were found to be Pd2+, PdNO3 +, and Pd(NO3)2. The formation constant of PdNO3 + was determined to be β 1 = 1.32 (I = 1 M), 1.49 (I = 3 M), or 1.47 (I = 5 M), while that of Pd(NO3)2 to be β 2 = 0.45 (I = 3 M) or 0.14 (I = 5 M).  相似文献   

4.
The properties of silica aerogels are highly dependent on the post-treatment steps like gel washing, gel aging and gel drying. The experimental results of the studies on one of the post-treatment steps i.e. gel aging effect on the physical and microstructural properties of methyltrimethoxysilane (MTMS) based silica aerogels, are reported. These hybrid aerogels were prepared by two step sol–gel process followed by supercritical drying. The molar ratio of MeOH/MTMS (M) was varied from 7 to 35 by keeping the H2O/MTMS (W) molar ratio constant at 4. The as prepared alcogels of different molar ratios were aged from 0 to 5 days. It was observed that 2 days of gel aging period is the optimum gel aging period for good quality aerogels in terms of low density, less volume shrinkage and high porosity. The well tailored network matrix with low density (0.04 g/cm3), less volume shrinkage (4.5%), low thermal conductivity (0.05 W/mK) and high porosity (98.84 %) was obtained for 2 days of gel aging period of M = 35. Further, the gelation time varied from 8 to 1 h depending on the M values. The gelation time was being more for lesser M values. The aerogels were characterized by bulk density, porosity, volume shrinkage, thermal conductivity, Scanning Electron Microscopy and the Fourier Transform Infrared spectroscopy.  相似文献   

5.
This study evaluated the effects of alloxan on the kinetics properties of the δ-aminolevulinate dehydratase (δ-ALA-D) using mouse liver homogenates. δ-ALA-D is an important sulfhydryl enzyme that catalyses the second step in heme biosynthesis and is commonly diminished in experimental and human diabetes. Despite the known effects of alloxan in models of experimental diabetes, there are no data in the literature demonstrating the effects of alloxan on the kinetics properties of the δ-ALA-D. The results showed that alloxan (1.25–20 μM) caused a concentration-dependent inhibition of hepatic δ-ALA-D activity. The inhibition constant (K i ) for alloxan-induced inhibition on δ-ALA-D was 3.64 μM. The alloxan (5 μM) caused a decrease in V max (65.8%) and in K m (53.1%), which is suggestive of an uncompetitive inhibition of enzyme. In addition, dithiothreitol (700 and 1,000 μM) completely prevented the δ-ALA-D activity inhibition induced by 10 and 20 μM alloxan. Similar protection was obtained in the presence of 2,000 μM glutathione. Therefore, this work showed that the inhibition of hepatic δ-ALA-D activity can be obtained in vitro at low micromolar levels of alloxan, and can also be prevented by reducing agents. Moreover, these results may help to understand the abnormalities in heme pathway found in models of experimental diabetes in vivo.  相似文献   

6.
Gold nanorods (GNRs) with suitable aspect ratio were synthesized with a template technique and then dispersed in a saturated sodium citrate solution by ultrasonication to form a GNR suspension. A GNR-modified electrode was fabricated using the GNR suspension. The oxidation of dopamine at the GNR/GC electrode exhibited surprisingly high electrocatalytic activity and adsorption-controlled characteristics. Square-wave voltammetry was used to detect dopamine. At the GNR/GC electrode, the linear concentration range of DA is from 1 × 10−8 M to 1 × 10−7 M and the detection limit (s/n = 3) is as low as 5.5 × 10−9 M. The current sensitivity is 3.280 μA/μM, and 1000-fold ascorbic acid (AA) cannot interfere with the determination of DA. All these performances are greatly superior to those of the bare GC electrode.  相似文献   

7.
A series of new isatin–mesalamine conjugates ( 9a – g ) were synthesized via conjugation of isatin ( 3a ) and its derivatives ( 3b – 3d , 4 , 5 , and 6 ) with mesalamine ( 7 ) by using chloroacetyl chloride as a bifunctional linker. Compounds 3a – 3d were prepared by employing Sandmeyer reaction. Compounds 4 , 5 , and 6 were obtained from isatin ( 3a ) via previously reported methods. The synthesized compounds were characterized by IR, mass, 1H NMR, and 13C NMR spectral techniques. Synthesized compounds ( 3a – d , 4 , 5 , 6 , and 9a – g ) were evaluated for in vitro antioxidant activity by DPPH assay method using ascorbic acid as standard. Hybrids 9b (IC50 = 368.6 ± 3.5 μM) and 9f (IC50 = 335.1 ± 2.9 μM) showed better antioxidant activity than its parent compounds such as 3a (IC50 = 556.8 ± 2.9 μM), 5 (IC50 = 511.9 ± 3.6 μM), and 7 (IC50 = 768.9 ± 2.7 μM). Acetic acid‐induced ulcerative colitis in rat model was chosen to examine the antioxidant potential of the synthesized hybrids ( 9b and 9f ) in the amelioration of ulcerative colitis. Colonic myeloperoxidase and malondialdehyde enzymes were used as biomarkers of anti‐ulcerative colitis activity. In the present study, hybrids 9b and 9f reduced the levels of colonic myeloperoxidase and malondialdehyde enzymes significantly (p < 0.05) when compared with control (colitic), at a dose (0.03 mM/12.5 mg/kg b.w. p.o.) (50%) less than that of its parent moieties mesalamine (0.16 mM/25 mg/kg) and isatin (0.16 mM/25 mg/kg). Thus, the molecular hybridization was proved to be significant in enhancing the activity of hybrids 9b and 9f by reducing the dose.  相似文献   

8.
Extraction behavior of 1 × 10−2–0.1 M U(VI) from aqueous phases containing 0.86 M Th(IV) at 4 M HNO3 in 1.1 M tributyl phosphate (TBP) and 1.1 M N,N-dihexyl octanamide (DHOA) solutions in different diluents viz. n-dodecane, 10% 1-octanol + n-dodecane, and decahydronaphthalene (decalin) was studied. Third-phase formation was observed in both the extractants using n-dodecane as diluent. There was a gradual decrease in Th(IV) concentration in the third-phase (heavy organic phase, HOP) with increased aqueous U(VI) concentration [0.71 M (no U(VI))–0.61 M (0.1 M U(VI)) for TBP; 0.27 M (no U(VI))–0.22 M (0.1 M U(VI)) for DHOA]. The HOP volume in case of DHOA was ~2.2 times of that of TBP. Uranium concentration in HOP increased with its initial concentration in the aqueous phase [from 1.8 × 10−2 M (0.01 M U(VI))–0.162 M (0.1 M U(VI)) for TBP; from 1.4 × 10−2 M (0.01 M U(VI))–0.14 M (0.1 M U(VI)) for DHOA] suggesting that Th(IV) was being replaced by U(VI). An empirical correlation was developed for predicting the concentrations of uranium and thorium in HOP for both the extractants. No third-phase appeared during the extraction of uranium and thorium from the aqueous phases employing 10% 1-octanol + n-dodecane, or decalin as diluents, and therefore, were better choices as diluent for alleviating the third-phase formation during the reprocessing of spent thorium based fuels, and for the recovery of thorium from high-level waste solutions.  相似文献   

9.
A β-glucosidase gene designated gluc3m was cloned through construction of a genomic library of Martelella mediterranea 2928. The gluc3m consisted of 2,496 bp and encoded a peptide of 832 amino acids that shared the greatest amino acid similarity (59%) with a β-glucosidase of family 3 glycoside hydrolase from Agrobacterium radiobacter K84. The optimum reaction temperature and pH of Gluc3M were 45 °C and 8.0, respectively. The K m and V max for p-nitrophenyl-β-d-glucopyranoside were 0.18 mg/ml and 196.08 μmol/min/mg enzyme, respectively. Gluc3M was found to be highly alkali stable, retaining 80% of its maximum enzymatic activity after treatment with pH 11.0 buffers for 24 h. Furthermore, the activity of Gluc3M improved remarkably in the presence of univalent metal ions, whereas it was inhibited in the presence of divalent ions. Gluc3M also exhibited significant activities toward various substrates including pNPGlu, pNPGal, salicin, and konjac powder. It is important to note that Gluc3M is a cold-active enzyme that showed over 50% of the maximum enzymatic activity at 4 °C. SWISS-MODEL revealed that the amino acids near the conserved domain SDW of Gluc3M contributed to the cold-active ability. Based on these characteristics, Gluc3M has the potential for use in additional studies and for industrial applications.  相似文献   

10.
Direct electrochemistry of glucose oxidase (GOx) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1-butyl pyridinium hexafluophosphate ([BuPy][PF6]) as binder for the first time. A pair of reversible peaks is exhibited on GOx/CILE by cyclic voltammetry. The peak-to-peak potential separation (ΔEP) of immobilized GOx is 0.056 V in 0.067 M phosphate buffer solution (pH 6.98) with scan rate of 0.1 V/s. The average surface coverage and the apparent Michaelis–Menten constant are 6.69 × 10−11 mol·cm−2 and 2.47 μM. GOx/CILE shows excellent electrocatalytic activity towards glucose determination in the range of 0.1–800 μM with detection limit of 0.03 μM (S/N = 3). The biosensor has been successfully applied to the determination of glucose in human plasma with the average recoveries between 95.0% and 102.5% for three times determination. The direct electrochemistry of GOx on CILE is achieved without the help of any supporting film or any electron mediator. GOx/CILE is inexpensive, stable, repeatable and easy to be fabricated.  相似文献   

11.
A gene-encoding alkaline phosphatase (AP) from thermophilic Geobacillus thermodenitrificans T2, termed Gtd AP, was cloned and sequenced. The deduced Gtd AP protein comprises 424 amino acids and shares a low homology with other known AP (<35% identity), while it exhibits the conservation of the active site and structure element of Escherichia coli AP. The Gtd AP protein, without a predicted signal peptide of 30 amino acids, was successfully overexpressed in E. coli and purified as a hexa-His-tagged fusion protein. The pH and temperature optima for purified enzyme are 9.0 and 65 °C, respectively. The enzyme retained a high activity at 45–60 °C, while it could be quickly inactivated by a heat treatment at 80 °C for 15 min, exhibiting a half-life of 8 min at 70 °C. The K m and V max for pNPP were determined to be 31.5 μM and 430 μM/min at optimal conditions. A divalent cation is essential, with a combination of Mg2+ and Co2+ or Zn2+ preferred. The enzyme was strongly inhibited by 10 mM ethylenediaminetetraacetic acid (EDTA) and vanadate but highly resistant to urea and dithiothreitol. The properties of Gtd AP make it suitable for application in molecular cloning or amplification.  相似文献   

12.
A novel bi-functional sensor, based on CdS nanocrystals (NCs) and hemoglobin (Hb) multilayer films, designated as {Hb/CdS}n, modified glassy carbon electrode (GCE) by layer-by-layer (LbL) assembly, has been presented. The electrogenerated chemiluminescence (ECL) and electrochemical properties of {Hb/CdS}n have been investigated in detail. Hb in the multilayer films can enhance the stability of electrogenerated species of CdS NCs, and CdS NCs can also promote the direct electron transfer between Hb and GCE. As a consequence experimentally, the multilayer films modified GCE is suitable to be used as a bi-functional sensor, ECL sensor and electrochemical sensor, to determine H2O2 in obviously different concentration. In high concentration of H2O2, this sensor as an ECL sensor shows a linear response from 15 μM up to 18 mM. In the lower concentration of H2O2, it as an amperometric one shows two linear ranges of amperometric responses to the concentration of H2O2 ranging from 6.0 to 31.0 μM and from 6.0 μM down to 40 nM with a detection limit of 20 nM, based on the high stability of ECL by {Hb/CdS}n and the excellent electrocatalytical ability of Hb to H2O2. Thus, {CdS/Hb}n modified electrodes would have a great merit to expand the application of biosensors to life science and environmental science.  相似文献   

13.
Electrochromic titanium oxide (TiO2) films were deposited on ITO/glass substrates by chemical solution deposition (CSD). The stock solutions were spin-coated onto substrates and then heated at various temperatures (200–500 °C) in various oxygen concentrations (0–80%) for 10 min. The effects of the processing parameters on the electrochromic properties of TiO2 films were investigated. X-ray diffraction measurements demonstrated that the amorphous TiO2 films were crystallized to form anatase films above 400 °C. The electrochromic properties and transmittance of TiO2 films were measured in 1 M LiClO4–propylene carbonate (PC) non-aqueous electrolyte. An amorphous 350 nm-thick TiO2 film that was heated at 300°C in 60% ambient oxygen exhibited the maximum transmittance variation (ΔT%), 14.2%, between the bleached state and the colored state, with a ΔOD of 0.087, Q of 10.9 mC/cm2, η of 7.98 cm2/C and x in Li x ClO4 of 0.076 at a wavelength (λ) of 550 nm.  相似文献   

14.

Background  

An important variability of contractile and metabolic properties between muscles has been highlighted. In the literature, the majority of studies on beef sensorial quality concerns M. longissimus thoracis. M. rectus abdominis (RA) is easy to sample without huge carcass depreciation and may appear as an alternative to M. longissimus thoracis for fast and routine physicochemical analysis. It was considered interesting to assess the muscle fibres of M. rectus abdominis in comparison with M. longissimus thoracis (LT) and M. triceps brachii (TB) on the basis of metabolic and contractile properties, area and myosin heavy chain isoforms (MyHC) proportions. Immuno-histochemical, histochemical, histological and enzymological techniques were used. This research concerned two populations of Charolais cattle: RA was compared to TB in a population of 19 steers while RA was compared to LT in a population of 153 heifers.  相似文献   

15.
A simple, sensitive, selective and rapid kinetic catalytic method has been developed for the determination of Hg(II) ions at micro-level. This method is based on the catalytic effect of Hg(II) ion on the rate of substitution of cyanide in hexacyanoruthenate(II) with nitroso-R-salt (NRS) in aqueous medium and provides good accuracy and precision. The concentration of Hg(II) catalyst varied from 4.0 to 10.0 × 10−6 M and the progress of reaction was followed spectrophotometrically at 525 nm (λmax of purple-red complex [Ru(CN)5NRS]3−,  = 3.1 × 103 M−1 s−1) under the optimized reaction conditions; 8.75 × 10−5 M [Ru(CN)64−], 3.50 × 10−4 M [nitroso-R-salt], pH 7.00 ± 0.02, ionic strength, I = 0.1 M (KCl), temp 45.0 ± 0.1 °C. The linear calibration curves, i.e. calibration equations between the absorbance at fixed times (t = 15, 20 and 25 min) versus concentration of Hg(II) ions were established under the optimized experimental conditions. The detection limit was found to be 1.0 × 10−7 M of Hg(II). The effect of various foreign ions on the proposed method has also been studied and discussed. The method has been applied to the determination of mercury(II) in aqueous solutions.  相似文献   

16.
Benfluorex [1-(m-trifluoromethylphenyl)-2-(β-benzoyloxyethyl)aminopropane] has been widely used for the treatment of atherogenic metabolic disorders and impaired carbohydrate metabolism (particularly in obese type-II diabetic patients) as well as an anorectic drug. Due to its potentially performance-enhancing properties, benfluorex has been added to the list of prohibited compounds and methods of doping by the World Anti-Doping Agency (WADA) in 2010, necessitating the implementation of the drug as well as its major metabolites into routine doping control procedures. In the present study, human urinary metabolites of benfluorex were characterized by gas chromatography–electron ionization–mass spectrometry (GC-EI-MS) as well as liquid chromatography–electrospray ionization–high resolution/high accuracy tandem mass spectrometry (LC-ESI-MS/MS). Commonly employed sports drug testing approaches consisting of liquid–liquid extraction followed by GC-MS or urine dilution and immediate LC-MS/MS analysis were expanded and validated with regard to specificity, recovery (48–54%, GC-MS only), intra- and interday precision (<25%), limits of detection (5–8 ng/mL for LC-MS/MS and 80 ng/mL for GC-MS), and ion suppression (for LC-ESI-MS/MS only) to allow the detection of benfluorex metabolites 1-(m-trifluoromethylphenyl)-2-(2-hydroxyethyl)aminopropane (M1), 1-(m-trifluoromethylphenyl)-2-(2-carboxymethyl)aminopropane (M2), and 1-(m-trifluoromethylphenyl)-2-aminopropane (M3) as well as the glucuronic acid conjugate of M1.  相似文献   

17.

Background  

M.tb icd-1 and M.tb icd-2, have been identified in the Mycobacterium tuberculosis genome as probable isocitrate dehydrogenase (ICD) genes. Earlier we demonstrated that the two isoforms can elicit B cell response in TB patients and significantly differentiate TB infected population from healthy, BCG-vaccinated controls. Even though immunoassays suggest that these proteins are closely related in terms of antigenic determinants, we now show that M.tb icd-1 and M.tb icd-2 code for functional energy cycle enzymes and document the differences in their biochemical properties, oligomeric assembly and phylogenetic affiliation.  相似文献   

18.
Opioids such as morphine are the cornerstone of pain treatment. The challenge of measuring the concentrations of morphine and its active metabolites in order to assess human pharmacokinetics and monitor therapeutic drugs in children requires assays with high sensitivity in small blood volumes. We developed and validated a semi-automated LC-MS/MS assay for the simultaneous quantification of morphine and its active metabolites morphine 3β-glucuronide (M3G) and morphine 6β-glucuronide (M6G) in human plasma and in dried blood spots (DBS). Reconstitution in water (DBS only) and addition of a protein precipitation solution containing the internal standards were the only manual steps. Morphine and its metabolites were separated on a Kinetex 2.6-μm PFP analytical column using an acetonitrile/0.1% formic acid gradient. The analytes were detected in the positive multiple reaction mode. In plasma, the assay had the following performance characteristics: range of reliable response of 0.25–1000 ng/mL (r 2 > 0.99) for morphine, 1–1,000 ng/mL (r 2 > 0.99) for M3G, and 2.5–1,000 ng/mL for M6G. In DBS, the assay had a range of reliable response of 1–1,000 ng/mL (r 2 > 0.99) for morphine and M3G, and of 2.5–1,000 ng/mL for M6G. For inter-day accuracy and precision for morphine, M3G and M6G were within 15% of the nominal values in both plasma and DBS. There was no carryover, ion suppression, or matrix interferences. The assay fulfilled all predefined acceptance criteria, and its sensitivity using DBS samples was adequate for the measurement of pediatric pharmacokinetic samples using a small blood of only 20–50 μL.  相似文献   

19.
An investigation was conducted into the electrochromic properties of organotungsten oxide WO x C y films synthesized onto 60 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates using low temperature, plasma-enhanced chemical vapor deposition (PECVD) at varying oxygen concentrations. The PECVD-synthesized WO x C y films were proven to offer remarkable electrochromic performance. Cyclic voltammetry switching measurements revealed that only low driving voltages from −1 to 1 V are needed to provide reversible Li+ ion intercalation and de-intercalation in a 0.1 M LiClO4–PC electrolyte. Light modulation with transmittance variation of up to 72.9% and coloration efficiency of 62.5 cm2/C at a wavelength of 650 nm was obtained.  相似文献   

20.
We present a validated liquid chromatography with tandem mass spectrometry method for simultaneous determination of 20‐(S )‐protopanaxatriol and its two oxidative stereoisomeric metabolites (20S ,24S )‐epoxy‐dammarane‐3,6,12,25‐tetraol (M1) and (20S ,24R )‐epoxy‐dammarane‐3,6,12,25‐tetraol (M2) in rat plasma. 20‐(S )‐Protopanaxatriol, M1, and M2 were extracted with methanol and separated on an ACQUITY HSS T3 column. The mass spectrometry detection was accomplished in selected reaction monitoring mode with precursor‐to‐product ion transitions of m/z 493.4→143.1 for M1 and M2, m/z 475.4→391.3 for 20‐(S )‐protopanaxatriol, and m/z 459.4→375.3 for 20‐(S )‐protopanaxadiol (internal standard). The method showed good linearity over the concentration ranges of 1–1000 ng/mL for 20‐(S )‐protopanaxatriol and 0.5–200 ng/mL for M1 and M2, with correlation coefficients of more than 0.995. The lower limits of quantification for 20‐(S )‐protopanaxatriol, M1, and M2 were 1, 0.5, 0.5 ng/mL, respectively. The intra‐ and interday precisions (RSD, %) were less than 10.41% while the accuracy (relative error, %) ranged from –3.14 to 8.73%. Under the current conditions, M1 and M2 were completely separated within 3 min. The validated assay was successfully applied to evaluating pharmacokinetic profiles of 20‐(S )‐protopanaxatriol, M1, and M2 in rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号