首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The13C fractionation has been studied in the reaction of phenylacetylene with the excess of liquid Merck formic acid at 30 and 40 °C to see the contribution of the13C fractionation in the formolysis of transient -formoxystyrene to the experimentally observed global13C fractionation. The13C fractionation has been investigated also in the hydration of 1 ml of PhCCH with 1 ml of formic acid in the temperature interval of 80–100°C. The13C KIE equal to 1.0168 at 91.75 °C and 1.0167 at 100°C indicate that the self-decomposition of formic acid in such experimental conditions is already largely suppressed. The isotope effect is discussed within the framework of the sequence of reaction steps leading to acetophenone and carbon monoxide production listed in part I.  相似文献   

2.
Intemolecular13C isotope effects in the decarbonylation of extra pure Merck liquid formic acid have been determined in the temperature interval 50–100 °C and compared to13C KIE observed in the decomposition of 99.9% liquid formic acid in the temperature range 60–100 °C. A very constants in the Arrhenius and Eyring equations have been calculated and found to be in a good agreement with the corresponding values ofBarham andClark.8  相似文献   

3.
The13C kinetic isotope effect (K.I.E.) in the decarbonylation of formic acid of natural isotopic composition in 85% orthophosphoric acid, in 100% H3PO4, and in pyrophosphoric acid has been measured in different temperature intervals ranging from 19 to 133 °C. In 85% H3PO4 the carbon-13 K.I.E. is determined by the fractionation of carbon isotopes expected for C–O bond rupture (k 12/k 13=1.0531 at 70°C). In 100% H3PO4 the13C K.I.E. indicates that C–H bond rupture is the major component of the reaction coordinate motion (thek 12/k 13 lay in the range of 1.026–1.017 over the range 30–70 °C). In pyrophosphoric acid the fractionation factor for13C equals 1.010 at 19 °C. Activation parameters for the decarbonylation of H12COOH in phosphoric acid media have been determined also and suggestions concerning the intimate mechanisms of decarbonylation of formic acid in dilute and concentrated phosphoric acids are made.  相似文献   

4.
The13C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphpric acids (PA) and by 85% H3PO4 has been studied in the temperature interval of 60–150°C. The values of the13C(1) isotope effects in the decarbonylation of lactic acid in 100% H3PO4, in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C(1)–OH bond is broken in the rate-controllin gstep of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90–130°C the experimental13C fractionation factors determined in concentrated PA approach quite closely the13C fractionation corresponding to C(2)–C(1) bond scission. the13C(1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110–150°C coincide with the13C isotope effects calculated assuming that the frequency corresponding to the C(1)–OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H3PO4 has been suggested. A possible secondary18O and a primary18O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too.  相似文献   

5.
The isotopic composition of the consecutive fractions of carbon monoxide produced in the decarbonylation of liquid formic acid of natural isotopic composition initiated by addition of phosphorus pentoxide has been measured in the temperature interval 19–100°C and the observed gradual decrease of the PDB values and the increase of thek 12/k 13 ratio of the isotopic specific rate constants (KIE values) for each next fraction of CO have been interpreted in terms of conclusions presented in the first paper from this series1 concerning the decarbonylation of HCOOH (F.A.) in concentrated and diluted with water phosphoric acid media. The initial fast dehydration of F.A. by phosphoric anhydride, P2O5, proceeds at room temperture with about 1% carbon-13 KIE. The (k 12/k 13) values increase with time, as the decarbonylation slows down due to the hydration of phosphorus pentoxide with water generated in dehydration of HCOOH and reach the plateau values characteristic for each reaction temperature. These increasing very slowly with reaction times at intermediate temperatures maximum values of (k 12/k 13) ratios are quite close to values of13C KIE observed in the decarbonylation of pure F.A. (k 12/k 13=1.0443 at 81°C). Addition of water to liquid F.A. at 90°C and at 100°C caused the further increase of the13C KIE. The detailed discussion of the13C KIE in the HCOOH–P2O5 system has been given.  相似文献   

6.
A direct, low-temperature hydrogen-1, carbon-13, and nitrogen-15 nuclear magnetic resonance study of lutetium(III)-isothiocyanate complex formation in aqueous solvent mixtures has been completed. At –100°C to –120°C in water-acetone-Freon mixtures, ligand exchange is slowed sufficiently to permit the observation of separate1H,13C, and15N NMR signals for coordinated and free water and isothiocyanate ions. In the13C and15N spectra of NCS, resonance signals for five complexes are observed over the range of concentrations studied. The13C chemical shifts of complexed NCS varied from –0.5 ppm to –3 ppm from that of free anion. For the same complexes, the15N chemical shifts from free anion were about –11 ppm to –15 ppm. The magnitude and sign of the15N chemical shifts identified the nitrogen atom as the binding site in NCS. The concentration dependence of the13C and15N signal areas, and estimates of the fraction of anion bound at each NCS:Lu3+ mole ratio, were consistent with the formation of [(H2O)5Lu(NCS)]2+ through [(H2O)Lu(NCS)5]2–. Although proton and/or ligand exchange and the resulting bulk-coordinated signal overlap prevented accurate hydration number measurements, a good qualitative correlation of the water1H NMR spectral results with those of13C and15N was possible.  相似文献   

7.
Excess enthalpy, excess isobaric heat capacity, density, and speed of sound for aqueous 2-isopropoxyethanol solutions were measured at 25°C. The density was also measured at 20°C. The excess enthalpy was –800 J-mol–1 at the minimum (mole fraction alcohol, x = 0.2), showing that the hydrogen bonds formed between unlike molecules are stronger than those in both pure liquid states. The excess volume also was large and negative, more than –1.2 cm3-mol–1 at the minimum (x = 0.35). Excess isentropic and isothermal compressibilities are extremely negative. These results suggest that breaking the hydrogen bond network in water and forming the stronger hydrogen bonds between unlike molecules reduces the volume of the solution and makes the solution less compressible. The excess isobaric heat capacity is positive and large, up to 10 J-K–1-mol–1 and shows anomalous behavior in the neighborhood of x = 0.15.  相似文献   

8.
Carbon-13 intramolecular kinetic isotope effects in the decarbonylation of oxalic acid dihydrate of natural isotopic composition by SO3 and by fuming sulphuric acid at room temperature and decarbonylation of oxalic acid dihydrate by 100% H3PO4 in the temperature interval 80–150°C have been determined. The obtained isotopic and kinetic results have been compared with the earlier13C experimental and theoretical studies in other solvents.  相似文献   

9.
Pyrolysis of t-butyl formate, (CH3)3C-O-CHO, has been carried out in a carrier gas stream of Ar or N2 in a temperature range of 200–400°C. Between 200 and 300°C, the pyrolysis yielded an equimolar mixture of HCOOH and (CH3)2C=CH2. The results have been used as a calibration method for determining the concentration of the gas-phase HCOOH monomer without interference from the formation of the formic acid dimer. Using this technique, the gas-phase infrared absorption cross-section of HCOOH at 1105 cm–1 (peak to valley) for the resolution of 0.5 cm–1 has been determined to be 6.76×10–19 cm2 molecule–1.  相似文献   

10.
The new alkaloid lilidine, isolated for the first time from the epigeal part ofLilium martagon has been studied by special methods. It has the composition B5H6NO2, mp 118–110°C, []D-26.3°. The1H and13C NMR spectra were studied in detail. The values of the direct and long-range spin-spin coupling constants between the13C carbon nuclei and the1H nuclei of the alkaloid molecule were measured with the aid of13C-[{su1}H] selective heteronuclear double resonance. The structure of 5-hydroxy-3-methyl-3-pyrrolin-2-one is suggested for lilidine.Institute of the Chemistry of Plant Substances of the Uzbek SSR Academy of Sciences, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 692–696, September–October, 1987.  相似文献   

11.
The determinations of the 13C fractionation in the decarboxylation of pure phenylpropiolic acid (PPA) above its melting point has been extended to higher degrees of decomposition of PPA by carrying out two-step decarboxylations to establish the maximum possible yield of carbon dioxide in the temperature interval of 423-475 K (58%). The result was compared with the yields of CO2 for decarboxylation of PPA in phenylacetylene solvent (PA) (much smaller, temperature dependent, and equal to 11% at 406 K). The ratios of carbon isotope ratios, R so/R pf, all smaller than 1.009 in the temperature interval 405-475 K, have been analyzed formally within the branched decomposition scheme of PPA, providing carbon dioxide and a decarboxylation resistant solid chemical compound enriched in 13C with respect to CO2. A general discussion of the 13C fractionation in the decarboxylation of pure PPA and PPA dissolved in PA is supplemented by the model calculation of the maximized skeletal 13C KIEs, in the linear chain propagation of the acetylene polymerization process. Further studies of the 13C fractionation in condensed phases and in different hydrogen defficient and hydrogen rich media have been suggested.  相似文献   

12.
The carbon-14 kinetic isotope effect for the decarbonylation of lactic acid[1-14C] in sulfuric acid has been measured in the temperature interval of 20–90°C. The experimental values of (k12C/k14C) are compared with the theoretical14C kinetic isotope effect calculated assuming that one carbon-oxygen stretching vibration is lost in the rate-determining step. The discrepancy between experimentally observed temperature dependence of the14C kinetic isotope effect and the theoretical one is explained by the possible side reactions which change the apparent degrees of decarbonylation and isotopic composition of CH3CHOHCOOH[1-14C] used in experiments aiming at the determination of carbon-14 kinetic isotope effect in the decarbonylation process itself.  相似文献   

13.
An assignment of1H and13C NMR signals has been made by the methods of homonuclear two-dimensional spectroscopy, HH COSY (45°), and heteronuclear correlation spectroscopy, CH HET CORR. It has been shown that the range of diastereomeric effects in the13C NMR spectra substantially exceeds the effects due to solvents, in contrast to the proton spectra in which these ranges overlap.Institute of Chemistry, Bashkir Scientific Center, Urals Branch, Academy of Sciences of the USSR, Ufa. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 363–368, May–June, 1991.  相似文献   

14.
The values of the second dissociation constant, pK2, and related thermodynamic quantities of 4-(N-morpholino)butanesulfonic acid (MOBS) and N-tris(hydroxymethyl)-4-aminobutanesulfonic acid (TABS) have already been reported over the temperature range 5–55°C including 37{°}C. This paper reports the pH values of twelve equimolal buffer solutions at designated pH (s) with the following compositions: (a) mixtures of MOBS (0.05 mol-kg–1) + NaMOBS (0.05 mol-kg–1); (b) MOBS (0.08 mol-kg–1) + NaMOBS (0.08 mol-kg–1); (c) MOBS (0.08 mol-kg–1) + NaMOBS (0.08 mol-kg–1) + NaCl (0.08 mol-kg–1); (d) TABS (0.05 mol-kg–1) + NaTABS (0.05 mol-kg–1); and (e) TABS (0.08 mol-kg–1) + NaTABS (0.08 mol-kg–1); and (f) TABS (0.08 mol-kg–1) + NaTABS (0.08 mol-kg–1) + NaCl (0.08 mol-kg–1). Two buffer solutions have ionic strengths I= 0.05 mol-kg–1, another two have I=0.08 mol-kg–1, and the remaining two buffer solutions have I= 0.16 mol-kg–1, which is close to that of the clinical fluids (blood serum). These buffers have been recommended as a useful pH standard for the measurements of physiological solutions. Conventional pH values of all six buffer solutions from 5–55°C, as well as those obtained from the liquid junction potential correction at 25 and 37{°}C have been calculated. The flowing-junction calomel cell has been utilized to measure Ej, the liquid junction potential.  相似文献   

15.
The energy resolution of -particles from241Am,222Rn,218Po and214Po and internal conversion electrons from131mXe with a liquid scintillation system has been studied at temperatures from 13 °C to –65 °C. At lower temperatures the liquid scintillation system has shown to give better energy resolutions both for -particles and internal conversion electrons compared with the values obtained at ordinary temperature. The phenomena were explained by the increase in light output of liquid scintillator at lower temperatures.  相似文献   

16.
The limiting equivalent conductances at temperatures from 0° to 1000°C and pressures from 1 to 5000 bars of a large number of aqueous ions have been calculated from limiting equivalent conductances of electrolytes reported in the literature. The limiting equivalent conductances of individual ions typically increase by a factor of about 15 with increasing temperatures from 0° to 1000°C and decrease about 30 percent with increasing pressure from 1 to 5 kb. The equivalent conductance of H2O approximated by the sum of the limiting equivalent conductances of H+ and OH is essentially independent of pressure, but increases from about 350 to a maximum of approximately 1800 S-cm2-equiv–1 in response to an increase in temperature from 0° to 500°C at 1kb. Stokes' law radii and Walden products generated from the computed limiting equivalent conductances of ions exhibit changes over the temperature and pressure range of interest by as much as 100 percent for all of the ions except H+ and OH, which vary by an order of magnitude. Apparent solvation numbers calculated as a function of pressure and temperature from the Stokes' law radii using the volume and dielectric constant of H2O and Born coefficients of the individual ions approach infinity at the critical point of H2O. Residual friction coefficients as a general rule approach zero as temperatures increases to 1000°C. The excess limiting equivalent conductances of the hydrogen and hydroxyl ions computed from the differences between the limiting equivalent conductances of HCl and KCl, and NaOH and NaCl, respectively, increases with increasing pressure, and maximize at 250°C.  相似文献   

17.
Raman spectra of gold bromide complexes in acidic solutions (pH=–0.3–3) have been recorded at 25° to 300°C and at pressures on the liquid vapor curve for the system. At 25°C, only the square planar Au(III) bromide complex, AuBr 4 , is present in solution with bands at approximately 105, 197 and 215 cm–1. However, in these acidic solutions, when the temperature is 50°C or higher, the square planar Au(III) bromide complex is partially transformed into the linear Au(I) bromide complex, AuBr 2 , with a single band near 208 cm–1. The transformation of the Au(III) square planar tetrabromo complex into the Au(I) linear dibromo complex is also favored by a reduction of the oxygen fugacity and an increase in pH.  相似文献   

18.
The second dissociation constant pK2 of 3-(N-morpholino)propanesulfonic acid (MOPS) has been determined at eight temperatures from 5 to 55°C by measurements of the emf of cells without liquid junction, utilizing hydrogen electrodes and silver–silver chloride electrodes. The pK2 has a value of 7.18 ± 0.001 at 25°C and 7.044 ± 0.002 at 37°C. The thermodynamic quantities G°, H°, S°, and C p o have been derived from the temperature coefficients of the pK 2. This buffer at ionic strength I = 0.16 mol-kg–1 close to that of blood serum, has been recommended as a useful secondary pH standard for measurements of physiological fluids. Five buffer solutions with the following compositions were prepared: (a) equimolal mixture of MOPS (0.05 mol-kg–1) + NaMOPS, (0.05 mol-kg–1); (b( MOPS (0.05 mol-kg–1) + NaMOPS (0.05 mol-kg–1) + NaCl (0.05 mol-kg–1); (c) MOPS (0.05 mol-kg–1) + NaMOPS (0.05 mol-kg–1); + NaCl (0.11mol-kg–1); (d) MOPS (0.08 mol-kg–1) + NaMOPS (0.08 mol-kg–1); and (e)MOPS (0.08 mol-kg–1) + NaMOPS (0.08 mol-kg–1) + NaCl (0.08 mol-kg–1).The pH values obtained by using the pH meter + glass electrode assembly are compared with those measured from a flow–junction calomel cell saturated with KCl (cell B), as well as those obtained from cell (A) without liquid junction at 25 and 37°C. The conventional values of the liquid junction potentials E j have been obtained at 25 and 37°C for the physiological phosphate reference solution as well as for the MOPS buffers (d) and (e) mentioned above.  相似文献   

19.
High precision densities of sodium chloride solutions at a constant pressure of 200 bar and temperatures between 175°C and 350°C have been measured by a mercury displacement technique. The densities have been converted to apparent molar volumes. The apparent molar volumes decrease with increasing temperature and decreasing concentration whereas the concentration effect increases with temperature. Standard partial molar volumes range from 8.0 cm3-mol–1 at 175°C to –600 cm3-mol–1 at 350°C. The results indicate the applicability of the unextended Debye-Hückel limiting law up to concentrations of 0.02 mol-kg–1.  相似文献   

20.
The possibilities of liquid membrane preconcentration of neptunium from environmental samples of different nature have been studied. The use the solid-supported liquid membrane containing a trioctylmethylammonium nitrate carrier allows to achieve preconcentration factors of 102–5×102. The teflon solid support does not interact with the luminescent matrix (CaF2, PbMoO4) during calcination at 900 °C, so it makes practical to measure the neptunium content by luminescence without reextraction to aqueous solution. As a result, the detection limit of neptunium is lowed down to 10–13 g ml–1 and 5×10–13 g g–1 for pure solutions and soils, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号