首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time resolved measurements of singlet oxygen phosphorescence at 1270 nm were made from unsealed red cell ghosts, labeled with 5-(N-hexadecanoyl)aminoeosin and suspended in deuterium oxide buffer. The singlet oxygen emission lifetime was long, 23 +/- 1 microseconds. The lifetime of the singlet oxygen phosphorescence from intact unsealed ghosts was not a measure of the singlet oxygen lifetime within the red cell ghost membrane, however. The prolonged singlet oxygen emission was due to singlet oxygen escaping from the thin membrane into the buffer, since the emission lifetime was significantly shortened by adding azide ion or water to the deuterium oxide buffer. The lifetime of singlet oxygen within the red cell ghosts membrane was estimated by dispersing the ghosts with detergent and then measuring the singlet oxygen lifetime in deuterium oxide buffers containing various dilutions of the dispersed ghosts. Apparent singlet-oxygen quenching constants were measured using four different photosensitizing dyes and two different detergents. The apparent quenching constant was independent of the dye used, but varied significantly with different detergents. Extrapolation of this data to "100%" ghost concentration gave a singlet oxygen lifetime from 24 and 130 ns. A ghost concentration of "100%" was defined as that concentration of red cell ghost molecules which would be contained within a red cell ghost membrane pellet containing no buffer solutions. Most of the singlet oxygen quenching was due to proteins. Lipids extracted from red cell ghosts accounted for only 2-7% of the total singlet oxygen quenching.  相似文献   

2.
Abstract— A series of amines were found to quench singlet oxygen in the order tertiary > secondary > primary, with a reasonable correlation between the log of their rate constant of quenching and their ionization potential. In addition, a Hammett rho plot gave a rho value of - 1.39 for the quenching of singlet oxygen by a series of substituted N, N-dimethylanilines, in good agreement with the results obtained by a different method. It was found that some of the amines (anilines) quenched the triplet state of the dye-sensitizer (Rose Bengal) used for the production of singlet oxygen. Corrections in the results were made in the calculations of rates of quenching of singlet oxygen to allow for the triplet-state quenching. No extensive quenching of the singlet state of the dye was observed at the concentrations of the amines necessary for singlet-oxygen quenching. In one case (N, N, N', N'-tetramethylphenylenediamine) there was no observable chemical reaction between singlet oxygen and the amine. It was concluded that singlet oxygen undergoes physical quenching by the amines via partial charge-transfer intermediates.  相似文献   

3.
Abstract— The 1-anilinonaphthalene-8-sulfonic acid solubilized in dodecylammonium propionate reversed micellar cyclohexanic solutions, emitted a strong fluorescence, and was photooxidized under aerobic conditions. Carbon tetrachloride (CCl4) highly quenched the fluorescence and remarkably enhanced the oxidation reaction. The fluorescence quenching obeyed the Stern-Volmer relation, and the photooxidation was caused by the singlet oxygen generated by the photosensitization of the dye. From the kinetic analysis, it was known that the intersystem crossing rate from the dye excited singlet to triplet was enhanced by CCl4. Carbon tetrachloride did not quench the triplet state. The ratio of quantum yields for the oxidation in the presence and absence of CCl4 was independent of the oxygen concentration in the reaction mixture. The fluorescence quenching constant and the intersystem crossing rate were obtained at various solubilized water contents.  相似文献   

4.
Abstract— Triplet extinction coefficients and hence singlet → triplet intersystem crossing quantum yields have been measured in benzene for a number of linear furocoumarins including pseudopsoralen, 5, 8-dimethoxypsoralen, 4, 5', 8-trimethylpsoralen and 3-carbethoxypseudopsoralen. These triplet yields were then used in conjunction with the corresponding quantum yields of singlet oxygen formation, measured in oxygenated solution, to estimate the fractions of furocoumarin triplets which when quenched by ground state oxygen produce singlet excited oxygen, similar data being obtained for psoralen, 5-methoxypsoralen, 8-methoxypsoralen and 3-carbethoxypsoralen. The superoxide anion radical was not detected from these oxygen quenching reactions, nor was a contribution to the singlet oxygen yield found from furocoumarin excited singlet state quenching by oxygen. The fraction of furocoumarin-oxygen quenching interactions leading to singlet oxygen varied between 0.13 (for 5, 8-dimethoxypsoralen) and unity (for 3-carbethoxypsoralen), and thus needs to be taken into account, as well as the triplet quantum yields, in assessing photobiological processes involving singlet oxygen.  相似文献   

5.
Abstract The results of a nanosecond laser flash photolysis investigation of the UVA sunscreen Mexoryl* SX in various solvent environments and within a commercial sunscreen formulation are reported. To the best of our knowledge this is the first laser flash photolysis study of a commercial suncare formulation. In each of these environments kinetic UV-visible absorption measurements following nanosecond 355 nm laser excitation reveals a short-lived species with a solvent-dependent absorption maximum around 470–500 nm and a solvent-dependent lifetime of 50–120 ns. This transient absorption is attributed to the triplet state of Mexoryl* SX on the basis that it is quenched by molecular oxygen leading to the formation of singlet oxygen in acetonitrile. The singlet oxygen quantum yield (φΔ), determined by comparative time-resolved near-infrared luminescence measurements and extrapolated to the limit of complete triplet state quenching, is estimated as 0.09 ± 0.03 in acetonitrile. In aqueous solution the shorter triplet state lifetime combined with lower ambient oxygen concentrations precludes significant triplet state quenching. For the commercial sunscreen formulation there was no observable difference in the measured triplet lifetime between samples exposed to oxygen or argon, suggesting that the singlet oxygen quantum yield in such environments is likely to be orders of magnitude lower than that measured in acetonitrile.  相似文献   

6.
研究了多种不同过渡金属络合物对单重态氧的猝灭问题。结果表明过渡金属络合物猝灭单重态氧的能力主要和络合物分子的几何构型有关。能形成平面四方形结构的络合物由于中心金属原子易于和1O2分子相接近因而具有强的猝灭1O2的能力,反之形成四面体形结构的络合物则猝灭能力减弱。  相似文献   

7.
Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.  相似文献   

8.
The process of sight (photostasis) produces, as a by-product, a chromophore called 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E, 5E,7E-octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E, 3E, 5E-hexatrienyl]-pyridinium (A2E), whose function in the eye has not been defined as yet. In youth and adulthood, A2E is removed from human retinal pigment epithelial (h-RPE) cells as it is made, and so it is present in very low concentrations, but with advanced age, it accumulates to concentrations reaching 20 microM. In the present study we have used photophysical techniques and in vitro cellular measurements to explore the role of A2E in h-RPE cells. We have found that A2E has both pro- and antioxidant properties. It generated singlet oxygen (phiso = 0.004) much less efficiently than its precursor trans-retinal (phiso = 0.24). It also quenched singlet oxygen at a rate (10(8) M(-1) s(-1)) equivalent to two other endogenous quenchers of reactive oxygen species in the eye: alpha-tocopherol (vitamin E) and ascorbic acid (vitamin C). The endogenous singlet oxygen quencher lutein, whose quenching rate is two orders of magnitude greater than that of A2E, completely prevented light damage in vitro, suggesting that singlet oxygen does indeed play a role in light-induced damage to aged human retinas. We have used multiphoton confocal microscopy and the comet assay to measure the toxic, phototoxic and protective capacity of A2E in h-RPE cells. At 1-5 microM, A2E protected these cells from UV-induced breaks in DNA; at 20 microM, A2E no longer exerted this protective effect. These results imply that the role of A2E is not simple and may change over the course of a lifetime. A2E itself may play a protective role in the young eye but a toxic role in older eyes.  相似文献   

9.
Unconjugated oxidized pterins accumulate in the skin of patients suffering from vitiligo and, under UVA irradiation, photosensitize the oxidation of amino acids. In this work, we study the interaction of the singlet and triplet excited states of pterin (Ptr), the parent compound of oxidized pterins, with four oxidizable amino acids: tryptophan (Trp), tyrosine (Tyr), histidine (His) and methionine (Met). Steady‐state and time‐resolved fluorescence measurements and laser flash photolysis experiments were performed to investigate the quenching of the Ptr excited states by the amino acids in aqueous solution. The singlet excited states of Ptr are quenched by Met mainly via a dynamic process and by Trp via a combination of dynamic and static processes. His does not quench singlet excited states of Ptr, and quenching by Tyr could not be investigated due to the low solubility of this amino acid. The triplet excited states of Ptr are quenched by the four studied amino acids, and the corresponding bimolecular quenching rate constants are in the range of diffusion controlled limit. The assessment of the results in the context of the Ptr‐photosensitization of amino acids suggests that triplet excited state of Ptr is the species that initiates the photochemical processes.  相似文献   

10.
An absorptive chemically induced dynamic electron polarization (CIDEP) was generated by the quenching of singlet oxygen by nitroxide radicals (TEMPO derivatives). The spin polarization decay time of the nitroxide (measured by time-resolved EPR) correlates with the lifetime of singlet oxygen (measured by singlet oxygen phosphorescence spectroscopy). In addition, a deuterium isotope effect on the spin polarization decay time was observed, a signature of singlet oxygen involvement. With use of isotope labeled nitroxides (15N, 14N), the relative spin polarization efficiencies of TEMPO, 4-oxo-TEMPO, and 4-hydroxy-TEMPO by singlet oxygen were determined. The relative spin polarization efficiencies (per quenching event) decrease in the order 4-hydroxy-TEMPO > TEMPO > 4-oxo-TEMPO, whereas an opposite trend was observed for the total quenching rate constants of singlet oxygen by the nitroxides where the order is 4-hydroxy-TEMPO < TEMPO < 4-oxo-TEMPO.  相似文献   

11.
The role of electronically excited singlet (1Δg) oxygen molecules in the photooxidation of polymers has received increased attention in recent years. Little information regarding the interaction of ultraviolet stabilizers with singlet oxygen is known, however. In this study, singlet oxygen was produced by a microwave discharge in a flow system and rate constants were obtained for quenching by ultraviolet stabilizers. It was found that some nickel chelate stabilizers are effective quenchers of singlet oxygen and their quenching behaviors can be correlated with ultraviolet stabilization effectiveness in thin polypropylene and polyethylene films. The best oxygen quenchers of those examined are nickel chelates with sulfur donor ligands.  相似文献   

12.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

13.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

14.
Linear and angular furocoumarins with conjugated external carbonyl substituents show higher triplet and singlet oxygen yields than the corresponding unsubstituted molecules. The efficiency of the oxygen quenching process to yield singlet oxygen is also higher for these substituted molecules. These changes are interpreted in terms of the "proximity effect" associated with two nearly degenerate n pi* and pi pi* excited states, and variations in the excess energy following furocoumarin triplet quenching by ground state triplet oxygen to yield singlet oxygen.  相似文献   

15.
Abstract –The interaction of 8-methoxypsoralen (8-MOP) with synthetic eumelanin was investigated using static and time-resolved fluorescence and pulsed photoacoustic calorimetry. Due to the strong overlap of the absorption bands of melanin and 8-MOP, a method is presented to account for the systematic errors introduced by the optical filter effect exerted by each absorbing species in the fluorescence and the photoacoustic measurements. As a preliminary step to the understanding of the nonradiative behavior of the psoralen-melanin complexes, the photoacoustic parameters of 8-MOP in various solvents were determined. Spectroscopic data indicate the absence of interaction at the ground-state level, whereas the singlet excited state of 8-MOP is quenched by the pigment; the average fluorescence lifetimes are independent of the melanin concentration, thus indicating a static quenching mechanism. The photoacoustic data show that the quenching process involves an increased intersystem crossing probability, which is almost unaffected by the presence of oxygen, as expected for a molecule essentially acting as a type I photosensitizing agent.  相似文献   

16.
Abstract: The interaction of 8-methoxypsoralen (8-MOP) with synthetic eumelanin was investigated using static and time-resolved fluorescence and pulsed photoacoustic calorimetry. Due to the strong overlap of the absorption bands of melanin and 8-MOP, a method is presented to account for the systematic errors introduced by the optical filter effect exerted by each absorbing species in the fluorescence and the photoacoustic measurements. As a preliminary step to the understanding of the nonradiative behavior of the psoralen-melanin complexes, the photoacoustic parameters of 8-MOP in various solvents were determined. Spectroscopic data indicate the absence of interaction at the ground-state level, whereas the singlet excited state of 8-MOP is quenched by the pigment; the average fluorescence lifetimes are independent of the melanin concentration, thus indicating a static quenching mechanism. The photoacoustic data show that the quenching process involves an increased intersystem crossing probability, which is almost unaffected by the presence of oxygen, as expected for a molecule essentially acting as a type I photosensitizing agent.  相似文献   

17.
The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.  相似文献   

18.
The photochemistry of the retinoid analogue A1E shows an oxygen and solvent dependence. Irradiation of A1E with visible light (lambda(irr) = 425 nm) in methanol solutions resulted in pericyclization to form pyridinium terpenoids. Although the quantum yield for this cyclization is low (approximately 10(-4)), nevertheless the photochemical transformation occurs with quantitative chemical yield with remarkable chemoselectivity and diastereoselectivity. Conversely, irradiation of A1E under the same irradiation conditions in air-saturated carbon tetrachloride or deuterated chloroform produced a cyclic 5,8-peroxide as the major product. Deuterium solvent effects, experiments utilizing endoperoxide, phosphorescence, and chemiluminescence quenching studies strongly support the involvement of singlet oxygen in the endoperoxide formation. It is proposed that, upon irradiation, in the presence of oxygen, A1E acts as a sensitizer for generation of singlet oxygen from triplet oxygen present in the solution; the singlet oxygen produced reacts with A1E to produce cyclic peroxide. Thus, the photochemistry of A1E is characterized by two competing reactions, cyclization and peroxide formation. The dominant reaction is determined by the concentration of oxygen, the concentration of A1E, and the lifetime of singlet oxygen in the solvent employed. If the lifetime of singlet oxygen in a given solvent is long enough, then oxidation (peroxide formation) is the major reaction. If the singlet oxygen produced is quenched by the protonated solvent molecules faster than singlet oxygen reacts with A1E, then cyclization dominates.  相似文献   

19.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

20.
Abstract— The aerobic dye-sensitized photooxygenation of monohydric phenols proceeds by way of singlet oxygen under the conditions studied. Various phenols give different proportions of reaction with and quenching of singlet oxygen. Para-substituted 2,6-di-t-butylphenols show a linear correlation between the log of the total rate of singlet oxygen removal and their halfwave oxidation potentials; the same correlation is given for certain phenol methyl ethers. A Hammett plot using s?+ gives ρ - 1.72 ± 0.12, consistent with development of some charge in the quenching step. Reaction of photo-chemically generated singlet oxygen with 2,4,6-triphenylphenol gives 2,4,6-triphenylphenoxy radical as an intermediate in singlet oxygen quenching, although no overall reaction occurs. Kinetic analysis indicates that the radical is derived exclusively from the interaction of 2,4,6-triphenylphenol with singlet oxygen. A charge-transfer mechanism for quenching of singlet oxygen by phenols is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号