首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the general space–time fractional equation of the form \(\sum _{j=1}^m \lambda _j \frac{\partial ^{\nu _j}}{\partial t^{\nu _j}} w(x_1, \ldots , x_n ; t) = -c^2 \left( -\varDelta \right) ^\beta w(x_1, \ldots , x_n ; t)\), for \(\nu _j \in \left( 0,1 \right] \) and \(\beta \in \left( 0,1 \right] \) with initial condition \(w(x_1, \ldots , x_n ; 0)= \prod _{j=1}^n \delta (x_j)\). We show that the solution of the Cauchy problem above coincides with the probability density of the n-dimensional vector process \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), where \(\varvec{S}_n^{2\beta }\) is an isotropic stable process independent from \(\mathcal {L}^{\nu _1, \ldots , \nu _m}(t)\), which is the inverse of \(\mathcal {H}^{\nu _1, \ldots , \nu _m} (t) = \sum _{j=1}^m \lambda _j^{1/\nu _j} H^{\nu _j} (t)\), \(t>0\), with \(H^{\nu _j}(t)\) independent, positively skewed stable random variables of order \(\nu _j\). The problem considered includes the fractional telegraph equation as a special case as well as the governing equation of stable processes. The composition \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), supplies a probabilistic representation for the solutions of the fractional equations above and coincides for \(\beta = 1\) with the n-dimensional Brownian motion at the random time \(\mathcal {L}^{\nu _1, \ldots , \nu _m} (t)\), \(t>0\). The iterated process \(\mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t)\), \(t>0\), inverse to \(\mathfrak {H}^{\nu _1, \ldots , \nu _m}_r (t) =\sum _{j=1}^m \lambda _j^{1/\nu _j} \, _1H^{\nu _j} \left( \, _2H^{\nu _j} \left( \, _3H^{\nu _j} \left( \ldots \, _{r}H^{\nu _j} (t) \ldots \right) \right) \right) \), \(t>0\), permits us to construct the process \(\varvec{S}_n^{2\beta } \left( c^2 \mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t) \right) \), \(t>0\), the density of which solves a space-fractional equation of the form of the generalized fractional telegraph equation. For \(r \rightarrow \infty \) and \(\beta = 1\), we obtain a probability density, independent from t, which represents the multidimensional generalization of the Gauss–Laplace law and solves the equation \(\sum _{j=1}^m \lambda _j w(x_1, \ldots , x_n) = c^2 \sum _{j=1}^n \frac{\partial ^2}{\partial x_j^2} w(x_1, \ldots , x_n)\). Our analysis represents a general framework of the interplay between fractional differential equations and composition of processes of which the iterated Brownian motion is a very particular case.  相似文献   

2.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

3.
Let \((M,\Omega )\) be a connected symplectic 4-manifold and let \(F=(J,H) :M\rightarrow \mathbb {R}^2\) be a completely integrable system on M with only non-degenerate singularities. Assume that F does not have singularities with hyperbolic blocks and that \(p_1,\ldots ,p_n\) are the focus–focus singularities of F. For each subset \(S=\{i_1,\ldots ,i_j\}\), we will show how to modify F locally around any \(p_i, i \in S\), in order to create a new integrable system \(\widetilde{F}=(J, \widetilde{H}) :M \rightarrow \mathbb {R}^2\) such that its classical spectrum \(\widetilde{F}(M)\) contains j smooth curves of singular values corresponding to non-degenerate transversally hyperbolic singularities of \(\widetilde{F}\). Moreover the focus–focus singularities of \(\widetilde{F}\) are precisely \(p_i\), \(i \in \{1,\ldots ,n\} \setminus S\). The proof is based on Eliasson’s linearization theorem for non-degenerate singularities, and properties of the Hamiltonian Hopf bifurcation.  相似文献   

4.
If \(T=\left(\begin{array}{clcr}T_1&\quad C\\ 0&\quad T_2\end{array}\right) \in B(\mathcal{X }_1\oplus \mathcal{X }_2)\) is a Banach space upper triangular operator matrix with diagonal \((T_1, T_2)\) such that \(T_2\) is \(k\)-nilpotent for some integer \(k\ge 1\), then \(T\) inherits a number of its spectral properties, such as SVEP, Bishop’s property \((\beta )\) and the equality of Browder and Weyl spectrum, from those of \(T_1\). This paper studies such operators. The conclusions are then applied to provide a general framework for results pertaining (for example) to Browder, Weyl type theorems and supercyclicity for classes of Hilbert space operators, such as \(k\)-quasi hyponormal, \(k\)-quasi isometric and \(k\)-quasi paranormal operators, defined by a positivity condition.  相似文献   

5.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

6.
Let \(v = (v_1, \ldots , v_n)\) be a vector in \(\mathbb {R}^n {\setminus } \{ 0 \}\). Consider the Laplacian on \(\mathbb {R}^n\) with drift \(\Delta _{v} = \sum _{i = 1}^n \Big ( \frac{\partial ^2}{\partial x_i^2} + 2 v_i \frac{\partial }{\partial x_i} \Big )\) and the measure \(d\mu (x) = e^{2 \langle v, x \rangle } dx\), with respect to which \(\Delta _{v}\) is self-adjoint. Let d and \(\nabla \) denote the Euclidean distance and the gradient operator on \(\mathbb {R}^n\). Consider the space \((\mathbb {R}^n, d, d\mu )\), which has the property of exponential volume growth. We obtain weak type (1, 1) for the Riesz transform \(\nabla (- \Delta _{v} )^{-\frac{1}{2}}\) and for the heat maximal operator, with respect to \(d\mu \). Further, we prove that the uncentered Hardy–Littlewood maximal operator is bounded on \(L^p\) for \(1 < p \le +\infty \) but not of weak type (1, 1) if \(n \ge 2\).  相似文献   

7.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

8.
Given a sequence of random functionals \(\bigl \{X_k(u)\bigr \}_{k \in \mathbb {Z}}\), \(u \in \mathbf{I}^d\), \(d \ge 1\), the normalized partial sums \(\check{S}_{nt}(u) = n^{-1/2}\bigl (X_1(u) + \cdots + X_{\lfloor n t \rfloor }(u)\bigr )\), \(t \in [0,1]\) and its polygonal version \({S}_{nt}(u)\) are considered under a weak dependence assumption and \(p > 2\) moments. Weak invariance principles in the space of continuous functions and càdlàg functions are established. A particular emphasis is put on the process \(\check{S}_{nt}(\widehat{\theta })\), where \(\widehat{\theta } \xrightarrow {\mathbb {P}} \theta \), and weaker moment conditions (\(p = 2\) if \(d = 1\)) are assumed.  相似文献   

9.
Let \(\pi :{\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\rightarrow {\mathbb {P}}^{n-1}\) be a projective bundle over \({\mathbb {P}}^{n-1}\) with \(1\le k \le n-1\). We denote \({\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\) by \(N_{k}^{n}\) and endow it with the U(n)-invariant gradient shrinking Kähler Ricci soliton structure constructed by Cao (Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, 1996) and Koiso (Recent topics in differential and analytic geometry. Advanced studies in pure mathematics, Boston, 1990). In this paper, we show that lens space \(L(k\, ;1)(r)\) with radius r embedded in \(N_{k}^{n}\) is a self-similar solution. We also prove that there exists a pair of critical radii \(r_{1}<r_{2}\), which satisfies the following. The lens space \(L(k\, ;1)(r)\) is a self-shrinker if \(r<r_{2}\) and self-expander if \(r_{2}<r\), and the Ricci-mean curvature flow emanating from \(L(k\, ;1)(r)\) collapses to the 0-section of \(\pi \) if \(r<r_{1}\) and to the \(\infty \)-section of \(\pi \) if \(r_{1}<r\). This paper gives explicit examples of Ricci-mean curvature flows.  相似文献   

10.
11.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

12.
We study the principal parts bundles \(\mathcal {P}^{k}\mathcal {O}_{\mathbb {P}^{n}}(d)\) as homogeneous bundles and we describe their associated quiver representations. With this technique we show that if n≥2 and 0≤d<k then there exists an invariant decomposition \(\mathcal {P}^{k}\mathcal {O}_{\mathbb {P}^{n}}(d)=Q_{k,d}\oplus(S^{d}V\otimes \mathcal {O}_{\mathbb {P}^{n}})\) with Q k,d a stable homogeneous vector bundle. The decomposition properties of such bundles were previously known only for n=1 or kd or d<0. Moreover we show that the Taylor truncation maps \(H^{0}\mathcal {P}^{k}\mathcal {O}_{\mathbb {P}^{n}}(d)\to H^{0}\mathcal {P}^{h}\mathcal {O}_{\mathbb {P}^{n}}(d)\), defined for any hk and any d, have maximal rank.  相似文献   

13.
Let \(n\ge 3, \Omega \) be a bounded, simply connected and semiconvex domain in \({\mathbb {R}}^n\) and \(L_{\Omega }:=-\Delta +V\) a Schrödinger operator on \(L^2 (\Omega )\) with the Dirichlet boundary condition, where \(\Delta \) denotes the Laplace operator and the potential \(0\le V\) belongs to the reverse Hölder class \(RH_{q_0}({\mathbb {R}}^n)\) for some \(q_0\in (\max \{n/2,2\},\infty ]\). Assume that the growth function \(\varphi :\,{\mathbb {R}}^n\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }({\mathbb {R}}^n)\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) be the Musielak–Orlicz–Hardy space whose elements are restrictions of elements of the Musielak–Orlicz–Hardy space, associated with \(L_{{\mathbb {R}}^n}:=-\Delta +V\) on \({\mathbb {R}}^n\), to \(\Omega \). In this article, the authors show that the operators \(VL^{-1}_\Omega \) and \(\nabla ^2L^{-1}_\Omega \) are bounded from \(L^1(\Omega )\) to weak-\(L^1(\Omega )\), from \(L^p(\Omega )\) to itself, with \(p\in (1,2]\), and also from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to the Musielak–Orlicz space \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself. As applications, the boundedness of \(\nabla ^2{\mathbb {G}}_D\) on \(L^p(\Omega )\), with \(p\in (1,2]\), and from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself is obtained, where \({\mathbb {G}}_D\) denotes the Dirichlet Green operator associated with \(L_\Omega \). All these results are new even for the Hardy space \(H^1_{L_{{\mathbb {R}}^n},\,r}(\Omega )\), which is just \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) with \(\varphi (x,t):=t\) for all \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\).  相似文献   

14.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

15.
The Voronin universality theorem asserts that a wide class of analytic functions can be approximated by shifts \(\zeta (s+i\tau )\), \(\tau \in \mathbb {R}\), of the Riemann zeta-function. In the paper, we obtain a universality theorem on the approximation of analytic functions by discrete shifts \(\zeta (s+ix_kh)\), \(k\in \mathbb {N}\), \(h>0\), where \(\{x_k\}\subset \mathbb {R}\) is such that the sequence \(\{ax_k\}\) with every real \(a\ne 0\) is uniformly distributed modulo 1, \(1\le x_k\le k\) for all \(k\in \mathbb {N}\) and, for \(1\le k\), \(m\le N\), \(k\ne m\), the inequality \(|x_k-x_m| \ge y^{-1}_N\) holds with \(y_N> 0\) satisfying \(y_Nx_N\ll N\).  相似文献   

16.
Let \(\mathbb F_{q}\) be a finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{n})\in \mathbb F_{q}^{n}\backslash \{(0,0,\ldots )\}: Tr(x_{1}^{p^{k_{1}}+1}+x_{2}^{p^{k_{2}}+1}+\cdots +x_{n}^{p^{k_{n}}+1})=c\}\), where \(c\in \mathbb F_p\), Tr is the trace function from \(\mathbb F_{q}\) to \(\mathbb F_{p}\) and each \(m/(m,k_{i})\) ( \(1\le i\le n\) ) is odd. we define a p-ary linear code \(C_{D}=\{c(a_{1},a_{2},\ldots ,a_{n}):(a_{1},a_{2},\ldots ,a_{n})\in \mathbb F_{q}^{n}\}\), where \(c(a_{1},a_{2},\ldots ,a_{n})=(Tr(a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}))_{(x_{1},x_{2},\ldots ,x_{n})\in D}\). We present the weight distributions of the classes of linear codes which have at most three weights.  相似文献   

17.
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausdorff. We show that there exist isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\), \(n \ge 3\), which are orbit-equivalent on the complement of an n-dimensional degenerate subspace \(\mathbb {W}^n\) of \(\mathbb {L}^{n+1}\) and not orbit-equivalent on \(\mathbb {W}^n\). We classify isometric cohomogeneity one actions on \(\mathbb {L}^2\) and \(\mathbb {L}^3\) up to orbit-equivalence.  相似文献   

18.
Given a smooth, symmetric and homogeneous of degree one function \(f\left( \lambda _{1},\ldots ,\lambda _{n}\right) \) satisfying \(\partial _{i}f>0\quad \forall \,i=1,\ldots , n\), and a properly embedded smooth cone \({\mathcal {C}}\) in \({\mathbb {R}}^{n+1}\), we show that under suitable conditions on f, there is at most one f self-shrinker (i.e. a hypersurface \(\Sigma \) in \({\mathbb {R}}^{n+1}\) satisfying \(f\left( \kappa _{1},\ldots ,\kappa _{n}\right) +\frac{1}{2}X\cdot N=0\), where \(\kappa _{1},\ldots ,\kappa _{n}\) are principal curvatures of \(\Sigma \)) that is asymptotic to the given cone \({\mathcal {C}}\) at infinity.  相似文献   

19.
For positive integers nk with \(3\le k\le n\), let \(X=\mathbb {F}_{2^n}\setminus \{0,1\}\), \({\mathcal {G}}=\{\{x,x+1\}:x\in X\}\), and \({\mathcal {B}}_k=\left\{ \{x_1,x_2,\ldots ,x_k\}\!\subset \!X:\sum \limits _{i=1}^kx_i=1,\ \sum \limits _{i\in I}x_i\!\ne \!1\ \mathrm{for\ any}\ \emptyset \!\ne \!I\!\subsetneqq \!\{1,2,\ldots ,k\}\right\} \). Lee et al. used the inclusion–exclusion principle to show that the triple \((X,{\mathcal {G}},{\mathcal {B}}_k)\) is a \((k,\lambda _k)\)-GDD of type \(2^{2^{n-1}-1}\) for \(k\in \{3,4,5,6,7\}\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(2^n-2^i)}{(k-2)!}\) (Lee et al. in Des Codes Cryptogr,  https://doi.org/10.1007/s10623-017-0395-8, 2017). They conjectured that \((X,{\mathcal {G}},{\mathcal {B}}_k)\) is also a \((k,\lambda _k)\)-GDD of type \(2^{2^{n-1}-1}\) for any integer \(k\ge 8\). In this paper, we use a similar construction and counting principles to show that there is a \((k,\lambda _k)\)-GDD of type \((q^2-q)^{(q^{n-1}-1)/(q-1)}\) for any prime power q and any integers kn with \(3\le k\le n\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^i)}{(k-2)!}\). Consequently, their conjecture holds. Such a method is also generalized to yield a \((k,\lambda _k)\)-GDD of type \((q^{\ell +1}-q^{\ell })^{(q^{n-\ell }-1)/(q-1)}\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^{\ell +i-1})}{(k-2)!}\) and \(k+\ell \le n+1\).  相似文献   

20.
Let \(\alpha ,\beta \) be orientation-preserving diffeomorphism (shifts) of \(\mathbb {R}_+=(0,\infty )\) onto itself with the only fixed points \(0\) and \(\infty \) and \(U_\alpha ,U_\beta \) be the isometric shift operators on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f=(\alpha ')^{1/p}(f\circ \alpha )\), \(U_\beta f=(\beta ')^{1/p}(f\circ \beta )\), and \(P_2^\pm =(I\pm S_2)/2\) where
$$\begin{aligned} (S_2 f)(t):=\frac{1}{\pi i}\int \limits _0^\infty \left( \frac{t}{\tau }\right) ^{1/2-1/p}\frac{f(\tau )}{\tau -t}\,d\tau , \quad t\in \mathbb {R}_+, \end{aligned}$$
is the weighted Cauchy singular integral operator. We prove that if \(\alpha ',\beta '\) and \(c,d\) are continuous on \(\mathbb {R}_+\) and slowly oscillating at \(0\) and \(\infty \), and
$$\begin{aligned} \limsup _{t\rightarrow s}|c(t)|<1, \quad \limsup _{t\rightarrow s}|d(t)|<1, \quad s\in \{0,\infty \}, \end{aligned}$$
then the operator \((I-cU_\alpha )P_2^++(I-dU_\beta )P_2^-\) is Fredholm on \(L^p(\mathbb {R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号