首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton spin lattice relaxation time ( T 1 ) measurements have been carried out in methylammonium trichloro stannate(II) (CH 3 NH 3 SnCl 3 ) as a function of temperature in the range 317-5 K at a Larmor frequency of 10 MHz. The temperature dependence of T 1 shows a phase transition around 220 K and four T 1 minima (294 K, 62 K, 32 K and 12 K). The results are discussed in terms of proton dynamics, namely, uncorrelated reorientation of NH 3 and CH 3 groups at high temperatures and tunnelling of NH 3 and CH 3 protons at low temperatures.  相似文献   

2.
(CH(3))(4)NPF(6) is studied by NMR measurements to understand the internal motions and cross relaxation mechanism between the heterogeneous nuclei. The spin lattice relaxation times (T(1)) are measured for (1)H and (19)F nuclei, at three (11.4, 16.1 and 21.34 MHz) Larmor frequencies in the temperature range 350-50K and (1)H NMR second moment measurements at 7 MHz in the temperature range 300-100K employing home made pulsed and wide-line NMR spectrometers. (1)H NMR results are attributed to the simultaneous reorientations of both methyl and tetramethylammonium groups and motional parameters are evaluated. (19)F NMR results are attributed to cross relaxation between proton and fluorine and motional parameters for the PF(6) group reorientation are evaluated.  相似文献   

3.
Proton spin-lattice relaxation time and second moment of polycrystalline [4-NH2C5H4NH][SbCl4] have been determined at 160-400 K, at 90 and 25 MHz. The temperature dependence of the second moment indicates that the cation is in the "frozen" state over that temperature range, while at higher temperatures it oscillates at an angle of 135 degrees to the pseudo-six-fold axis of the aromatic ring. Weak influence of different phase transitions on the temperature dependences of relaxation times T1 and T1D can be explained in terms of molecular dynamics.  相似文献   

4.
The explosive hexahydro-1,3,5-trinitro-s-triazine (CH2-N-NO2)3, commonly known as RDX, has been studied by 14N NQR and 1H NMR. NQR frequencies and relaxation times for the three ν+ and ν- lines of the ring 14N nuclei have been measured over the temperature range 230-330 K. The 1H NMR T1 dispersion has been measured for magnetic fields corresponding to the 1H NMR frequency range of 0-5.4 M Hz. The results have been interpreted as due to hindered rotation of the NO2 group about the N-NO2 bond with an activation energy close to 92 kJ mol(-1). Three dips in the 1H NMR dispersion near 120, 390 and 510 kHz are assigned to the ν0, ν- and ν+ transitions of the 14NO2 group. The temperature dependence of the inverse line-width parameters T2? of the three ν+ and ν- ring nitrogen transitions between 230 and 320 K can be explained by a distribution in the torsional oscillational amplitudes of the NO2 group about the N-NO2 bond at crystal defects whose values are consistent with the latter being mainly edge dislocations or impurities in the samples studied. Above 310 K, the 14N line widths are dominated by the rapid decrease in the spin-spin relaxation time T2 due to hindered rotation of the NO2 group. A consequence of this is that above this temperature, the 1H T1 values at the quadrupole dips are dominated by the spin mixing time between the 1H Zeeman levels and the combined 1H and 14N spin-spin levels.  相似文献   

5.
Molecular dynamics in n-dodecylammonium chloride/water solutions for concentrations of 34 and 45 wt% was studied by 2H NMR and by 1H NMR dispersion of spin-lattice relaxation in the 2 kHz-90 MHz frequency range. The system exhibits a number of lyotropic liquid crystalline phases, which differ in symmetry and involve motions characterized by a wide frequency scale. The analysis of 2H NMR lineshapes of selectively deuterated DDACl molecules gave us an evidence for local trans-gauche conformational changes in the chains, whereas the dispersion of spin-lattice relaxation times T1 explored by fast field cycling method revealed fast local motions, translational diffusion and collective molecular dynamics of the chains. In particular, we have found that the order director fluctuation mechanism in smectic and nematic phases dominates spin-lattice relaxation below 1 MHz and that local motions and translational diffusion are responsible for the spin-lattice relaxation in the higher Larmor frequency range.  相似文献   

6.
Pulsed NMR spin lattice relaxation measurements on 13C and 1H nuclei in undoped trans-polyacetylene have been carried out between 6 and 295 K. The results indicate that the spin lattice relaxation is due to equilibrium fluctuations of the orientational order parameter for the protons while the carbon relaxation can be attributed to their coupling to paramagnetic impurities. In this temperature range no contribution of solitons has been detected in the relaxation mechanisms.  相似文献   

7.
Electron spin relaxation times for four triarylmethyl (trityl) radicals at room temperature were measured by long-pulse saturation recovery, inversion recovery, and electron spin echo at 250 MHz, 1.5, 3.1, and 9.2 GHz in mixtures of water and glycerol. At 250 MHz T(1) is shorter than at X-band and more strongly dependent on viscosity. The enhanced relaxation at 250 MHz is attributed to modulation of electron-proton dipolar coupling by tumbling of the trityl radicals at rates that are comparable to the reciprocal of the resonance frequency. Deuteration of the solvent was used to distinguish relaxation due to solvent protons from the relaxation due to intra-molecular electron-proton interactions at 250 MHz. For trityl-CD(3), which contains no protons, modulation of dipolar interaction with solvent protons dominates T(1). For proton-containing radicals the relative importance of modulation of intra- and inter-molecular proton interactions varies with solution viscosity. The viscosity and frequency dependence of T(1) was modeled based on dipolar interaction with a defined number of protons at specified distances from the unpaired electron. At each of the frequencies examined T(2) decreases with increasing viscosity consistent with contributions from T(1) and from incomplete motional averaging of anisotropic hyperfine interaction.  相似文献   

8.
Silver sulfo-antimonide Ag5SbS4 (stephanite) has been studied by nuclear quadrupole resonance (NQR) spectroscopy on antimony nuclei. The temperature dependences of the spectroscopic and relaxation parameters have been examined in the range of 4.2?C395 K. A phase transition at 140 K and internal motions with an activation energy of 0.29 eV have been experimentally detected. The nature of the phase transition and diffusion of silver ions has been discussed in view of the reported data.  相似文献   

9.
The ferroelectric phase transition at T(C2) (=370K) in RbHSeO(4) has been studied by (1)H and (87)Rb solid-state NMR. Although not large, the spin-lattice relaxation time, T(1), and the spin-spin relaxation time, T(2), of rubidium and of the alpha- and beta-type protons show distinct change near the phase transition. The intensity of the signal due to the alpha-type protons decreases with increasing temperature, and the intensity of alpha-type protons is quite weak above 330K: at a temperature which is about 40K lower than the phase transition temperature, the ordering of the alpha-type protons occurs. The alpha-type protons in the ferroelectric phase lead to a noticeable change in the proton magnetic resonance spectra. Our study of the (1)H spectra shows that the ferroelectric phase transition in RbHSeO(4) is of order-disorder type and is due to the ordering of protons in hydrogen bonds.  相似文献   

10.
Molecular dynamics of a polycrystalline sample of (CH(3)NH(3))(5)Bi(2)Br(11) (MAPBB) is studied on the basis of the proton T(1) (55.2 MHz) relaxation time and the proton second moment of NMR line. The T(1) (55.2 MHz) was measured for temperatures from 20K to 330 K, while the second moment M(2) for those from 40K to 330 K. The proton spin pairs of the methyl and ammonium groups perform a complex stochastic motion being a resultant of four components characterised by the correlation times τ(3)(T), τ(3)(H), τ(2), and τ(iso), referring to the tunnelling and over the barrier jumps in a triple potential, jumps between two equilibrium sites and isotropic rotation. The theoretical expressions for the spectral densities in the cases of the complex motion considered were derived. For τ(3)(H), τ(2), and τ(iso) the Arrhenius temperature dependence was assumed, while for τ(3)(T)-the Schr?dinger one. The correlation times τ(3)(H) for CH(3) and NH(3) groups differ, which indicates the uncorrelated motion of these groups. The stochastic tunnelling jumps are not present above the temperature T(tun) at which the thermal energy is higher than the activation energy of jumps over the barrier attributed to the hindered rotation of the CH(3) and NH(3) groups. The T(tun) temperature is 54.6 K for NH(3) group and 46.5 K for CH(3) group in MAPBB crystal. The tunnelling jumps of the methyl and ammonium protons are responsible for the flattening of T(1) temperature dependence at low temperatures. The isotropic tumbling is detectable only from the M(2) temperature dependence. The isotropic tumbling reduces the second moment to 4 G(2) which is the value of the intermolecular part of the second moment. The motion characterised by the correlation time τ(2) is well detectable from both T(1) and M(2) temperature dependences. This motion causes the appearance of T(1) minimum at 130 K and reduction of the second moment to the 7.7 G(2) value. The small tunnelling splitting ω(T) of the same value for the methyl and ammonium groups was estimated as 226 MHz from the Haupt equation or 80 MHz from the corrected by us Haupt equation. These frequencies correspond to 0.93 μeV and 0.34 μeV tunnel splitting energy.  相似文献   

11.
Nuclear magnetic resonance of oriented54Mn nuclei in antiferromagnetic MnCl2 · 4H2O has been observed. The first two lines of the sextuplet split by quadrupole interaction are at frequencies 500.4 and 514.7 MHz, implying a hyperfine field of 643(5) kG. The stronger line at 500.4 MHz has a half-width at half maximum of 60 kHz and is shifted downward and split in frequency on application of a magnetic field. The nuclear spin-lattice relaxation time is dependent both on the applied field and the size and/or quality of the crystal.  相似文献   

12.
The dependence of the 1H spin-lattice relaxation time on the magnetic field strength has been determined for linear and cross-linked polyisoprene for Larmor frequencies between 5 kHz and 20 MHz. Universal power-law relations are found for all temperatures and cross-link densities under investigation and are compared to published results of rotating-frame experiments on similar natural rubber samples. The shape of the individual dispersion functions can be superposed into a master curve using appropriate shift factors. While addition of filler particles even at large weight fractions has only a minor effect on the relaxation times, uniaxial deformation and swelling are demonstrated to alter the molecular dynamics significantly.  相似文献   

13.
We present a modification of a field-cycling method which uses the NMR signal of the central transition at high field to indirectly detect zero-field quadrupole transitions. The quadrupole transitions at zero-field are detected as changes in the overall intensity of the central transition signal after the field cycle, and the method is relatively immune to lineshape distortions of the central transition caused by receiver dead time, frequency response of the probe, longer pulse lengths, etc. Cross-polarization with protons is used to enhance the central-transition signal and to increase the recycling rate of the experiment. The technique is especially useful when mixtures of several species are present. In a frozen solution of phenylboronic acid, 11B quadrupole signals of the tetrahedral species at 600 kHz and planar-trigonal species at 1450 kHz are clearly resolved. The field-cycling approach allows high-sensitivity detection of low-frequency quadrupole transitions; the experiment is sensitive enough to study boronic-acid protease inhibitors bound to proteins and may possibly be extended to lower sensitivity nuclei. The experiments are performed using a low-temperature field-cycling apparatus, operated at 10-30 K, capable of pneumatically moving the sample from the high field of a commercial 500 MHz magnet to the area above the top of the magnet where the low field is controlled by a pair of Helmholz coils.  相似文献   

14.
P Singh  R Mythili  M G Betigeri 《Pramana》1987,28(3):257-267
Design details of a 100 MeV proton linear accelerator (Alvarez system) operating at a resonating frequency of 400 MHz have been studied. Increase in the linac operating frequency has become feasible with the possibility of injecting protons from a radio frequency quadrupole accelerator with energies higher than the conventional pre-injectors. Various electrical parameters of such a system have been calculated and compared with the existing linac injectors operating at 200 MHz.  相似文献   

15.
In this work, an eight-element by eight-element dual-tuned quadrature volume coil with a mix of capacitor terminated half-wavelength (λ/2) and quarter-wavelength (λ/4) microstrip resonators is proposed for multinuclear magnetic resonance imaging/spectroscopy studies at 7 T. In the proton channel, λ/2 microstrip resonators with capacitive terminations on both ends are employed for operation at higher frequency of 298.1 MHz; in the heteronucleus channel, capacitor-terminated λ/4 resonators, suitable for low frequency operations, are used to meet the low frequency requirement. This mixed structure design is particularly advantageous for high field heteronuclei magnetic resonance applications with large difference in Larmor frequency of the nuclei in question. The proposed design method makes it much easier to perform frequency tuning for heteronucleus channel using a variable capacitor with a practical capacitance range. As an example, a dual-tuned volume coil for (1)H/(13)C mouse spectroscopic imaging was proposed to demonstrate the feasibility of this method. The finite-difference time-domain method is first used to model this dual-tuned volume coil and calculate the B(1) field distributions at two frequencies. Transmission parameters (S(21)) measured between the proton channel and the carbon channel are -50 dB at 75 MHz and -35 dB at 298 MHz, showing the excellent isolation between the two channels at 7 T. The proton image and (13)C FIDCSI image of a corn oil phantom on the axial plane at 7 T demonstrate the feasibility of the proposed method. A preliminary proton image of a mouse on the sagittal plane is also acquired using the proposed dual-tuned volume coil at 7 T, illustrating a fairly uniform B(1) field and sufficient image coverage for imaging in mice.  相似文献   

16.
Four different approaches for determining the electron relaxation rates in paramagnetic metallo-proteins are investigated, using a paramagnetic Ni2+ complex of a protein as an example. All four approaches rely on the determination of the longitudinal paramagnetic relaxation enhancements, R1p, of the 1H nuclei and the backbone 15N nuclei. Three of the methods utilize the field dependence of the R1p rates. It is found that the applicability of each of these methods depends on whether the fast-motion condition, omegaS2tau2<1, applies to the electron relaxation, omegaS being the Larmor frequency of the electron spin S and tau the correlation time of the electron relaxation. If the fast-motion condition is fulfilled, the electron relaxation rate can be obtained from the ratio of the R1p rates of one or more protons at two magnetic field strengths (method A). On the other hand, if the fast-motion condition does not apply, more elaborate methods must be used that, in general, require a determination of the R1p rates over a larger range of magnetic field strengths (method C). However, in the case of paramagnetic metal ions with relatively slow electron relaxation rates only two magnetic field strengths suffice, if the R1p rates of a hetero nucleus are included in the analysis (method B). In the fourth method (method D), the electron relaxation is estimated as a parameter in a structure calculation, using distance constraints derived from proton R1p rates at only one magnetic field strength. In general, only methods B and C give unambiguous electron relaxation rates.  相似文献   

17.
We measured the nuclear spin-lattice relaxation time T1, of several surface-bound nuclei, 1H, 19F, 11B, 13C, 29Si, and 2H, immersed in liquid 3He over the temperature range 0.01 K ⩽ T < 1 K. The Larmor frequencies of these nuclei in a 3.39 T field extended from 22 to 144 MHz. All T1 values were temperature-independent and ranged from a few seconds to several hours, depending on the particular nucleus and the surface geometry of the sample. The results indicate that the coupled relaxation of surface spins is a phenomenon occurring in all solids immersed in 3He and thus provides a general mechanism for obtaining high nuclear polarization in solids, that the relaxation is controlled by direct dipole-dipole interactions between the surface spins and 3He in the first surface layer, that the 3He motion dynamics do not change appreciably from one surface to another, and that measurements of T1 may thus be useful for determining the structure of surfaces.  相似文献   

18.
We describe damping of hypersonic and ultrasonic longitudinal acoustic (LA) phonons in crystals of Cs 5H (3)(SO (4))(4);xH 2O (PCHS) between 100 and 360 K. The damping of LA phonons exhibits strong dispersion caused by relaxation processes in the region of transformation into the glasslike phase (T(g) approximately 260 K). Near T(g) the damping of ultrasonic phonons propagating in the basal plane reflects the cooperative freezing of acid protons. The damping of LA phonons propagating perpendicular to the basal plane can be fit by the Debye model and is due to the interaction between protons and LA phonons. This suggests that the proton glass state that is realized at T相似文献   

19.
The effects of methyl rotation on electron spin-lattice relaxation times were examined by pulsed electron paramagnetic resonance for the major radicals in gamma-irradiated polycrystalline alpha-amino isobutyric acid, dimethyl-malonic acid, and L-valine. The dominant radical is the same in irradiated dimethyl-malonic acid and alpha-amino isobutyric acid. Continuous wave saturation recovery was measured between 10 and 295 K at S-band and X-band. Inversion recovery, echo-detected saturation recovery, and pulsed electron-electron double resonance (ELDOR) data were obtained between 77 and 295 K. For the radicals in the three solids, recovery time constants measured by the various techniques were not the same, because spectral diffusion processes contribute differently for each measurement. Hyperfine splitting due to the protons of two methyl groups is resolved in the EPR spectra for each of the samples. Pulsed ELDOR data were obtained to characterize the spectral diffusion processes that transfer magnetization between hyperfine lines. Time constants were obtained for electron spin-lattice relaxation (T(1e)), nuclear spin relaxation (T(1n)), cross-relaxation (T(x1)), and spin diffusion (T(s)). Between 77 and 295 K rapid cross-relaxation (deltaM(s) = +/- 1, deltaM(I) = -/+ 1) was observed for each sample, which is attributed to methyl rotation at a rate that is approximately equal to the electron Larmor frequency. The large temperature range over which cross-relaxation was observed suggests that methyl groups in the radical and in the lattice, with different activation energies for rotation, contribute to the rapid cross-relaxation. Activation energies for methyl and amino group rotation between 160 and 1900 K (1.3-16 kJ/mol) were obtained by analysis of the temperature dependence of 1/T(1e) at S-band and X-band in the temperature intervals where the dynamic process dominates T(1e).  相似文献   

20.
Despite the demonstrated utility of measurements of the magnetic field dependence of the magnetic relaxation rates of solvent protons in solutions of metalloproteins as an indicator of biochemical changes, it is becoming increasingly evident that quantitative comparisons of such data with the theory of relaxation, limited by the approximations and assumptions usually made, yield results for the strength of the solvent-paramagnetic ion interaction that generally do not make chemical sense. These results, when expressed as the number of solvent-donated ligands of the ions, usually give too large a value, typically by about twofold. It has been suggested by several investigators that a comparison of proton and deuteron relaxation rates could resolve the problem. Data are presented for the longitudinal relaxation rates of solvent protons and deuterons over more than four decades of magnetic field (from 0.01 to 270 MHz proton Larmor frequency) for solutions of Mn2+-concanavalin A, a protein for which the physical biochemistry is thoroughly documented, one that should be particularly tractable for such comparisons. The main conclusion is that, in the general case, there is no decade of magnetic field over which the mathematical criterion of best agreement of data with theory can be relied upon to yield quantitatively correct biochemical results; rather, biochemistry must still be a guide for elucidating relaxation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号