首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene surfaces were rendered cationic by hydrophobic implantation and by grafting a quaternized polyvinyl pyridine onto a plasma treated surface. The polypropylene surface with the grafted polymer showed a strong adsorption of an anionic surfactant, corresponding to about ten monomolecular layers. High concentration of electrolyte caused a reduction of the adsorption at low concentrations of surfactant.  相似文献   

2.
Poly(ethylene oxide) (PEO) could be grafted on the surface of polyaniline (PANI) films by chlorosulfonating the films with chlorosulfonic acid followed by reacting the modified films with PEO in a pyridine solution. The modified PANI films were examined by X-ray photoelectron spectroscopy and water droplet contact angles. The surface of the PEO grafted to hydrophobic PANI films became hydrophilic and the amounts of bovine serum albumin and human blood plasma platelet adsorbed onto it were decreased by more than 80%. For comparison purposes, and because the water wetting angle can be used as a measure of biocompatibility, wetting angle experiments have been also carried out for Pluronic triblock copolymer grafted to PANI and PEO or Pluronic molecules entrapped on the surfaces of PANI films. PANI was selected as substrate because one can easily change its surface properties by PEO grafting and because being conductive can be used as a sensor.  相似文献   

3.
Two reaction schemes were developed to covalently graft poly(ethylene glycol) (PEG) chains on poly(ethylene-co-acrylic acid) (EAA) surfaces. The schemes involved surface grafting of linker molecules L-lysine or polypropyleneamine dendrimer (AM64), with subsequent covalent bonding of PEG chains to the linker molecules. NHS and EDC were used to activate the carboxylic acid groups of the EAA in the outermost region of the film, estimated to be 20 nm by ATR-FTIR spectroscopy. XPS demonstrated that the conversion of this activation step was almost 100% in the detected region. After activation, L-lysine or dendrimer was grafted onto the EAA surface, followed by PEG grafting. Combining the data from ATR-FTIR, XPS, and contact angle goniometry, it was found that the PEG chains were grafted on the surface of the EAA film and larger surface coverage was achieved when the dendrimer was used as the intermediate layer. This surface also had the lowest water contact angle.  相似文献   

4.
Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective when the PEO layer is in a molecular brush conformation having a reciprocal grafting density (area per grafted PEO chain) less than the dimensions of the protein molecules. Nevertheless, the protein molecules may penetrate the PEO brush to some extent. For a given grafting density, the penetration is facilitated by increasing thickness of the brush. Tenuous brushes of reciprocal grafting densities exceeding the protein molecular dimensions enhance protein adsorption. The results point to a weak attractive interaction between PEO and protein. The protein repellency of a densely PEO-brushed surface is ascribed to a high activation energy for the protein molecules to enter the brush. Varying the temperature between 22 and 38 degrees C does not significantly affect the range of grafting density over which the brush changes from protein-attractive to protein-repellent.  相似文献   

5.
Homogeneous polystyrene monolayers covalently end-attached on mica and silica surfaces were obtained using a "graft to" methodology. The grafting was achieved via nucleophilic substitution between silanol groups (Si-OH) containing surface and monochlorosilyl terminated polystyrene (PS). Different parameters, such as surface activation, grafting reaction time, polymer concentration, nature of solvent, and presence of catalyst, were investigated to determine the optimal conditions for creating very homogeneous and stable polymer monolayers. Ellipsometry, atomic force microscopy (AFM), surface forces apparatus (SFA), and contact angle measurements were used to characterize the polymer-grafted layers. An efficient plasma activation procedure was established to create a maximum number of silanol groups on mica surfaces without increasing the surface roughness. Surface reactivity was investigated by grafting trimethylchlorosilane (TMS) on OH-activated mica and silica. The maximum TMS surface coverage on activated mica is similar to that observed for silica. The stability of covalently attached TMS and PS layers in toluene and water were investigated. Both grafted layers (TMS and PS) partially detached from the mica and silica surfaces when immersed in water. Hydrolysis of the siloxane bond between the monochlorosilyl groups and the surface is the most probable cause of layer degrafting. The degrafting was much slower with the long PS polymer chains, compared to the small TMS molecules, which may act as a protective layer against hydrolysis.  相似文献   

6.
The use of long‐lasting polymer coatings on biodevice surfaces has been investigated to improve material–tissue interaction, minimize adverse effects, and enhance their functionality. Natural polymers, especially chitosan, are of particular interest due to their excellent biological properties, such as biocompatibility, non‐toxicity, and antimicrobial properties. One way to produce chitosan coating is by covalent grafting with catechol molecules such as dopamine, caffeic acid, and tannic acid, resulting in an attachment ten times stronger than that of simple physisorption. Caffeic acid presents an advantage over dopamine because it allows direct chitosan grafting, due to its terminal carboxylic acid group, without the need of a linking arm, as employed in the dopamine approach. In this study, the grafting of chitosan using caffeic acid, over surfaces or in solution, is compared with dopamine grafting using poly(ethylene glycol) as a linking arm. The following coating properties are observed; covering and homogeneity are assessed by X‐ray photoelectron spectroscopy and atomic force microscopy analyses, hydrophilicity with contact angle measurements, stability with aging tests, anticorrosion behavior, and coating non‐toxicity. Results show that grafting using caffeic acid/chitosan in solution over a metallic surface may be advantageous, compared to traditional dopamine coating.  相似文献   

7.
In this work, we demonstrate the potential of surface‐initiated single electron transfer living radical polymerization for surface modification applications that confer low‐fouling properties. The versatility of the technique, which can be applied to a wide variety of substrates, has been displayed by the successful grafting of a range of monomers after immobilizing a bromine initiator on the surface via plasma polymerization. The thickness of the grafted surfaces can be controlled through variation of reaction parameters such as monomer concentration, reaction time, and the ratio between catalyst and ligand. Furthermore, the low‐fouling properties of the resulting surfaces were demonstrated against fully concentrated serum proteins and adhesive fibroblast cells, via grafting of N‐hydroxyethyl acrylamide (N‐HEA) or [2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl) ammonium hydroxide (SBMA). This rapid and versatile coating technique, which has the ability to be applied to a wide range of substrates, can be performed in aqueous conditions without the exclusion of atmospheric oxygen, and shows excellent potential for the surface modification of biomaterial surfaces that require low‐fouling properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2527–2536  相似文献   

8.
Raman mapping by point illumination of polymer surfaces is discussed with examples taken from the plasma treatment of polypropylene (PP) and subsequent grafting of polystyrene (PS). Maps can be constructed for surface properties such as crystallinity, blend components and distribution of grafted PS. The Raman sampling volume was estimated for confocal operation using a 50x objective lens.  相似文献   

9.
This theoretical study is focused on the formation of a cylindrical microstructure in a planar polymer brush in the presence of a surfactant. It is assumed that the brush may be nonuniform in the direction along the grafting plane and that there are regions with constant concentrations of monomer units and regions occupied only by the surfactant. The surfactant molecule is simulated by a dimer whose parts interact in a different manner with the monomer units of the polymer. At the interface between these regions, dimer molecules are oriented mainly perpendicularly to this interface and the surface tension is reduced. If the surface energy becomes negative, the formation of a structured brush is more favorable in terms of energy than that of a uniform brush. As a result, there may appear a cylindrical microstructure in which grafted macromolecules are united into strands perpendicular to the grafting plane. The stretching of macromolecules and their interaction with the solvent within the strands are described by the Alexander-de Gennes model, whereas the surface energy is calculated with allowance for the surface curvature of strands at a high degree of amphiphilicity of the surfactant molecules. It is shown that the arising strands have radii of the order of the surfactant-molecule length, while the number of macromolecules per strand is proportional to the surface density of their grafting. With an increase in the grafting density, the strand length increases initially, while the volume fraction of the polymer in a strand remains constant. Furthermore, strands start to shorten and their density grows. Structural characteristics are calculated as a function of the parameter characterizing the degree of amphiphilicity of the solvent molecules, their sizes, and their average energy of interaction with monomer units.  相似文献   

10.
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.  相似文献   

11.
The grafting of trialkoxysilane molecules should also give rise to the formation of a siloxane network at the substrate's surface when trialkoxysilanes are used. Other candidates that might be able to act as adhesion promoters at metallic surfaces are dimethylalkoxysilanes. The advantage of dimethylalkoxysilanes is that only one silanol group is produced during the hydrolysis step, leading to the formation of a grafted monolayer onto the steel. Moreover, the chemical grafting of stainless steel, which exhibits a low surface reactivity, is of great interest for industrial applications such as adhesive bonding or coatings. The objective of this work was to chemically graft dimethylalkoxysilanes onto AISI 316L stainless steel and to analyze the grafted layer by X‐ray photoelectron spectroscopy (XPS). Investigation of the hydrolysis of these molecules in aqueous solutions was also performed by proton nuclear magnetic resonance spectroscopy (1H NMR). The grafting of 3‐(ethoxydimethylsilyl)propylamine (APDES) and 3‐glycidoxypropyldimethylethoxysilane (GPDES) was achieved onto stainless steel after a controlled hydrolysis reaction. A pH inferior or equal to 5 was necessary to obtain a sufficient hydrolysis of silanes. XPS results have evidenced the grafting of the silanes onto stainless steel. The signal of the Si 2p peak clearly showed the formation of a covalent bond between APDES and the stainless steel surface through the O atoms giving rise to a uniform layer of adsorbed molecules. Moreover, this grafted layer is strongly stable as no removal of the alkoxysilane was observed after immersion in hot water which is very critical for these molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Strategies to modify metal oxide surfaces are important because of the increasing applications of metal oxides in catalysis, sensing, electronics, and renewable energy. Here, we report the formation of molecular monolayers on anatase nanocrystalline TiO(2) surfaces at near-ambient temperatures by a simple one-step immersion. This is achieved by an analogue of the Williamson ether synthesis, in which the hydroxyl groups of the TiO(2) surface react with iodo-alkane molecules to release HI and form a Ti-O-C surface linkage. The grafted molecules were characterized by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the formation of covalently bonded monolayers. Kinetic studies yielded an activation barrier of ~59 kJ/mol for the grafting reaction. Measurements of hydrolytic stability of the grafted molecules in water show that approximately half the molecules are removed within minutes to hours at temperatures of 25-100 °C with an activation energy of ~82 kJ/mol, while the remaining molecules are stable for much longer periods of time. These different stabilities are discussed in terms of the different types of Ti-O-C bonds that can form on TiO(2) surfaces.  相似文献   

13.
The surface of low density polyethylene (LDPE) was modified by grafting a photoinitiator on it, after an Ar plasma treatment. The functionalisation was characterized by contact angle measurements, XPS analyses and AFM. The grafted LDPE was then coated with a UV-curable formulation based on highly fluorinated oligomers. Although the surface tension of the coating is very low, a good adhesion onto the substrate was obtained due to the surface treatment which was applied.  相似文献   

14.
We investigated the characteristics of heterogeneous layers composed of linear hydrolyzed polyvinylamine and branched polyethyleneimine adsorbed at silica/water interfaces. The studies also included heterogeneous layers where branched polyethyleneimine was replaced by polyethyleneimine modified by grafting with C12-C22 alkyl chains. Surface area exclusion chromatography was used to determine the interfacial relaxation and surface affinity of the polymer molecules within homogeneous layers. The relaxation of bare and grafted polyethyleneimine was found to be small and of equal extent but to develop at different rates. Comparatively, the relaxation of hydrolyzed polyvinylamine was faster and of greater extent. Within heterogeneous layers composed of polyvinylamine and bare or grafted polyethyleneimine, the relaxation of the different molecules was strongly increased as compared to that prevailing in homogeneous layers. The chromatographic method was then used to determine the mode of layer establishment. The polymer coating profiles on successive glass fiber filters were found to depend on the sequence of injection of the two polymers, due to the interfacial stability or instability of the initially established layer. It was shown that a previously established extremely thin layer of bare or grafted polyethyleneimine molecules strongly modified the adsorption profile of subsequently adsorbed polyvinylamine molecules.  相似文献   

15.
In this work, bioadhesive behavior of plasma proteins and blood cells from umbilical cord blood (UCB) onto zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymer brushes was studied. The surface coverage of polySBMA brushes on a hydrophobic polystyrene (PS) well plate with surface grafting weights ranging from 0.02 mg/cm(2) to 0.69 mg/cm(2) can be effectively controlled using the ozone pretreatment and thermal-induced radical graft-polymerization. The chemical composition, grafting structure, surface hydrophilicity, and hydration capability of prepared polySBMA brushes were determined to illustrate the correlations between grafting properties and blood compatibility of zwitterionic-grafted surfaces in contact with human UCB. The protein adsorption of fibrinogen in single-protein solutions and at complex medium of 100% UCB plasma onto different polySBMA brushes with different grafting coverage was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. The grafting density of the zwitterionic brushes greatly affects the PS surface, thus controlling the adsorption of fibrinogen, the adhesion of platelets, and the preservation of hematopoietic stem and progenitor cells (HSPCs) in UCB. The results showed that PS surfaces grafted with polySBMA brushes possess controllable hydration properties through the binding of water molecules, regulating the bioadhesive and bioinert characteristics of plasma proteins and blood platelets in UCB. Interestingly, it was found that the polySBMA brushes with an optimized grafting weight of approximately 0.1 mg/cm(2) at physiologic temperatures show significant hydrated chain flexibility and balanced hydrophilicity to provide the best preservation capacity for HSPCs stored in 100% UCB solution for 2 weeks. This work suggests that, through controlling grafting structures, the hemocompatible nature of grafted zwitterionic polymer brushes makes them well suited to the molecular design of regulated bioadhesive interfaces for use in the preservation of HSPCs from human UCB.  相似文献   

16.

This review is the first part of a comprehensive review of hydrophobisation of lignocellulosic materials. The purpose of this review has been to compare physical hydrophobisation methods of lignocellulosic materials. We have compared molecular physical adsorption with plasma etching and grafting. Adsorption methods are facile and rely upon the simple mixing or coating of the substrate with the hydrophobing agent. However, none of the surfactant-based methods reviewed here reach contact angles above 90°, making them unsuitable for applications where a high degree of hydrophobisation is required. Nevertheless, surfactant based methods are well suited for compatibilising the lignocellulosic material with a hydrophobic matrix/polymer in cases where only a slight decrease in the hydrophilicity of the lignocellulosic substrate is required. On the other hand, wax- and lignin-based coatings can provide high hydrophobicity to the substrates. Plasma etching requires a more complex set-up but is relatively cheap. By physically etching the surface with or without the deposition of a hydrophobic coating, the material is rendered hydrophobic, reaching contact angles well above 120°. A major drawback of this method is the need for a plasma etching set-up, and some researchers co-deposit fluorine-based layers, which have a negative environmental impact. An alternative is plasma grafting, where single molecules are grafted on, initiated by radicals formed in the plasma. This method also requires a plasma set-up, but the vast majority of hydrophobic species can be grafted on. Examples include fatty acids, silanes and alkanes. Contact angles well above 110° are achieved by this method, and both fluorine and non-toxic species may be used for grafting.

Graphical abstract
  相似文献   

17.
Covalent grafting of biomolecules could potentially improve the biocompatibility of materials. However, these molecules have to be grafted in an active conformation to play their biological roles. The present work aims at verifying if the surface conjugation scheme of fibronectin (FN) affects the protein orientation/conformation and activity. FN was grafted onto plasma-treated fused silica using two different crosslinkers, glutaric anhydride (GA) or sulfosuccinimidyl 4-(p-maleimidophenyl)butyrate (SMPB). Fused silica was chosen as a model surface material because it presents a roughness well below the dimensions of FN, therefore allowing AFM analyses with appropriate depth resolution. Cell adhesion assays were performed to evaluate the bioactivity of grafted FN. Cell adhesion was found to be higher on GA-FN than on SMPB-FN. Since FN-radiolabeling assays allowed us to rule out a surface concentration effect (approximately 80 ng/cm2 of FN on both crosslinkers), it was hypothesized that FN adopted a more active conformation when grafted via GA. In this context, the FN conformation on both crosslinkers was investigated through AFM and contact angle analyses. Before FN grafting, GA- and SMPB-modified surfaces had a similar water contact angle, topography, and roughness. However, water contact angles of GA-FN and SMPB-FN surfaces clearly show differences in surface hydrophilicity, therefore indicating a dependence of protein organization toward the conjugation strategy. Furthermore, AFM results demonstrated that surface topography and roughness of both FN-conjugated surfaces were significantly different. Distribution analysis of FN height and diameter confirmed this observation as the protein dimensions were significantly larger on GA than SMPB. This study confirmed that the covalent immobilization scheme of biomolecules influences their conformation and, hence, their activity. Consequently, selecting the appropriate conjugation strategy is of paramount importance in retaining molecule bioactivity.  相似文献   

18.
The thermodynamics of a chemical reaction confined at a solid surface was investigated through kinetic measurements of a model unimolecular reaction. The thermal cleavage of ester groups grafted at the surface of solid silica was investigated together with complementary physicochemical characterization of the grafted species. The ester molecules were chemically grafted to the silica surface and subsequently cleaved into the carboxylic acids. A grafting process of a reproducible monolayer was designed using the reaction of monofunctional organosilane from its gas phase. The thermal deprotection step of the ester end-group was investigated. The thermal deprotection reaction behaves in quite a specific manner when it is conducted at a surface in a grafted layer. Different organosilane molecules terminated by methyl, isopropyl and tert-butyl ester groups were grafted to silica surface; such functionalized materials were characterized by elemental analysis, IR and NMR spectroscopy, and thermogravimetric analysis, and the thermodynamic parameters of the thermal elimination reaction at the surface were measured. The limiting factor of such thermal ester cleavage reaction is the thermal stability of grafted ester group according to the temperature order: tert-butyl < i-propyl < methyl. Methyl ester groups were not selectively cleaved by temperature. The thermal deprotection of i-propyl ester groups took place at a temperature close to the thermal degradation of the organofunctional tail of the silane. The low thermolysis temperature of the grafted tert-butyl esters allowed their selective cleavage. There is a definite influence of the surface on the reaction. The enthalpy of activation is lower than in the gas phase because of the polarity of the reaction site. The major contribution is entropic; the negative entropy of activation comes from lateral interactions with the neighbor grafted molecules because of the high grafting density. Such reaction is an original strategy to functionalize the silica surface by carboxylic acid groups by means of a simple, reproducible, and efficient process involving in situ thermolysis of ester groups.  相似文献   

19.
Citrate-capped gold nanoparticles as well as planar gold surfaces can be efficiently grafted with a covalently attached polymer monolayer a few nanometers thick, by simple contact of the metal surface with dilute aqueous solutions of hydrophilic polymers that are end-capped with disulfide moieties, as shown by UV/vis absorption, dynamic light scattering, and surface plasmon resonance studies. The hydrophilic polymer-coated gold colloids can be freeze-dried and stored as powders that can be subsequently dissolved to yield stable aqueous dispersions, even at very large concentrations. They allow for applying filtrations, gel permeation chromatography, or centrifugation. They do not suffer from undesirable nonspecific adsorption of proteins while allowing the diffusion of small species within the hydrogel surface coating. In addition, specific properties of the original hydrophilic polymers are retained such as a lower critical solution temperature. The latter feature could be useful to enhance optical responses of functionalized gold surfaces toward interaction with various substrates.  相似文献   

20.
Silicon is by far the most important semiconductor material in the microelectronic industry mostly due to the high quality of the Si/SiO2 interface. Consequently, applications requiring chemical functionalization of Si substrates have focused on molecular grafting of SiO2 surfaces. Unfortunately, there are practical problems affecting homogeneity and stability of many organic layers grafted on SiO2, such as silanes and phosphonates, related to polymerization and hydrolysis of Si–O–Si and Si–O–P bonds. These issues have stimulated efforts in grafting functional molecules on oxide-free Si surfaces, mostly with wet chemical processes. This review focuses therefore directly on wet chemical surface functionalization of oxide-free Si surfaces, starting from H-terminated Si surfaces. The main preparation methods of oxide-free H-terminated Si and their stability are first summarized. Functionalization is then classified into indirect substitution of H-termination by functional organic molecules, such as hydrosilylation, and direct substitution by other atoms (e.g. halogens) or small functional groups (e.g. OH, NH2) that can be used for further reaction. An emphasis is placed on a recently discovered method to produce a nanopattern of functional groups on otherwise oxide-free, H-terminated and atomically flat Si(1 1 1) surfaces. Such model surfaces are particularly interesting because they make it possible to derive fundamental knowledge of surface chemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号