首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are investigated. On the other hand, evaluations of predictions by LES and RANS are conducted using DNS results. The predictions of both LES and RANS almost agree with the DNS results in both cases, but the predicted temperature variances near the wall by RANS give different results as compared with DNS. This is because the dissipation rate of temperature variance is difficult to predict by the present RANS, which is found by the evaluation using DNS results.  相似文献   

2.
Buoyant flows often contain regions with unstable and stable thermal stratification from which counter gradient turbulent fluxes are resulting, e.g. fluxes of heat or of any turbulence quantity. Basing on investigations in meteorology an improvement in the standard gradient-diffusion model for turbulent diffusion of turbulent kinetic energy is discussed. The two closure terms of the turbulent diffusion, the velocity-fluctuation triple correlation and the velocity-pressure fluctuation correlation, are investigated based on Direct Numerical Simulation (DNS) data for an internally heated fluid layer and for Rayleigh–Bénard convection. As a result it is decided to extend the standard gradient-diffusion model for the turbulent energy diffusion by modeling its closure terms separately. Coupling of two models leads to an extended RANS model for the turbulent energy diffusion. The involved closure term, the turbulent diffusion of heat flux, is studied based on its transport equation. This results in a buoyancy-extended version of the Daly and Harlow model. The models for all closure terms and for the turbulent energy diffusion are validated with the help of DNS data for internally heated fluid layers with Prandtl number Pr = 7 and for Rayleigh–Bénard convection with Pr = 0.71. It is found that the buoyancy-extended diffusion model which involves also a transport equation for the variance of the vertical velocity fluctuation gives improved turbulent energy diffusion data for the combined case with local stable and unstable stratification and that it allows for the required counter gradient energy flux.  相似文献   

3.
This paper first presents the turbulent heat transfer phenomenon of the boundary layer over a 2-dimensional hill using the direct numerical simulation (DNS). DNS results reveal turbulent heat transfer phenomena in the boundary layer over a 2-dimensional hill affected by the flow acceleration and the concave wall at the foreface of a hill, the convex wall at the top of the hill, and the flow deceleration, separation, and reattachment and the concave wall at the back of the hill. The prediction of turbulent heat transfer, the turbulence models of LES and HLR should be assessed in such heat transfer because these models have seldom been evaluated in the complex turbulent heat transfer. Therefore, this paper also presents evaluations of predictions of LES and HLR in the complicated turbulent heat transfer which is the boundary layer with heat transfer over a 2-dimensional hill. Consequently, this paper obviously shows the detailed turbulent heat transfer phenomena of a boundary layer over a 2-dimensional hill via DNS, and the evaluation results of prediction accuracy of LES and HLR for the heat transfer. LES and HLR give good prediction in comparison with DNS results, but the predicted reattachment and separation points are slightly different from DNS.  相似文献   

4.
For direct numerical simulation (DNS) of turbulent boundary layers, gen- eration of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods.  相似文献   

5.
Time-developing direct numerical simulation (DNS) was performed to clarify the higher-order turbulent behaviors in the thermally-driven boundary layers both in air and water along a heated vertical flat plate. The predicted statistics of the heat transfer rates and the higher-order turbulent behaviors such as skewness factors, flatness factors and spatial correlation coefficients of the velocity and temperature fluctuations in the natural-convection boundary layer correspond well with those obtained from experiments for space-developing flows. The numerical results reveal that the turbulent structures of the buoyancy-driven boundary layers are mainly controlled by the fluid motions in the outer region of the boundary layer, and these large-scale structures are strongly connected with the generation of turbulence in the thermally-driven boundary layers, in accordance with the actual observations for space-developing flows. Moreover, to specify the turbulence structures of the boundary layers, the cross-correlation coefficients and the characteristic length scales are examined for the velocity and thermal fields. Consequently, it is found that with a slight increase in freestream velocity, the cross-correlation coefficient for the Reynolds shear stress and turbulent heat flux increases for opposing flow and decreases for aiding flow, and the integral scales for the velocity and temperature fields become larger for opposing flow and smaller for aiding flow compared with those for the pure natural-convection boundary layer.  相似文献   

6.
Large Eddy Simulations (LES) of spatially developing turbulent mixing layers have been performed for flows of uniform density and Reynolds numbers of up to 50,000 based on the visual thickness of the layer and the velocity difference across it. On a fine LES grid, a validation simulation performed with a hyperbolic tangent inflow profile produces flow statistics that compare extremely well with reference Direct Numerical Simulation (DNS) data. An inflow profile derived from laminar Blasius profiles produces a flow that is significantly different to the reference DNS, particularly with respect to the initial development of the flow. When compared with experimental data, however, it is the boundary layer-type inflow simulation produces the better prediction of the flow statistics, including the mean transition location. It is found that the boundary layer inflow condition is more unstable than the hyperbolic tangent inlet profile. A suitably designed coarse LES grid produces good predictions of the mean transition location with boundary layer inflow conditions at a low computational cost. The results suggest that hyperbolic tangent functions may produce unreliable DNS data when used as the initial condition for studies of the transition in the mixing layer flow.  相似文献   

7.
对来流Mach数2.25和6的平板边界层湍流进行了直接数值模拟, 并通过与理论、实验及他人计算结果的对比对数值结果进行了验证. 基于直接数值模拟得到的湍流数据库, 对常用的湍流模型进行了先验评估. 评估的湍流模型有k-εvarepsilon模型(包括标准k-εvarepsilon 模型、可实现的k-εvarepsilon模型及低Reynolds数k-εvarepsilon模型)、SA模型及BL模型. 结果显示, 对于Mach2.25的平板边界层, 可实现的k-εvarepsilon 模型及低Reynolds 数k-εvarepsilon模型具有较好的预测能力, 而标准k-εvarepsilon模型预测的湍流黏性系数偏高; SA模型在边界层内层预测准确度较高, 而在外层预测值偏高. 而对于Mach6的平板边界层, k-εvarepsilon模型及SA模型预测的湍流黏性系数均偏高, 尤其是标准k-εvarepsilon模型. 对于Mach6的平板边界层, BL模型低估了内-外层交界位置, 造成湍流黏性系数预测值严重偏低. 作者通过修改模型系数及内-外层交界位置对BL模型进行了修改, 修改后模型预测的湍流黏性系数与DNS给出的值吻合较好.  相似文献   

8.
A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers is proposed. It is especially useful for computation of laminar-turbulent transition and turbulence starting from small-amplitude disturbances. The laminar stage, up to the beginning of the breakdown in laminar-turbulent transition, is computed by parabolized stability equations (PSE). The direct numerical simulation (DNS) method is used to compute the transition process and turbulent flow, for which the inflow condition is provided by using the disturbances obtained by PSE method up to that stage. In the two test cases incfuding a subsonic and a supersonic boundary layer, the transition locations and the turbulent flow obtained with this method agree well with those obtained by using only DNS method for the whole process. The computational cost of the proposed method is much less than using only DNS method.  相似文献   

9.
Investigations into the characteristics of turbulent heat transfer and coherent flow structures in a plane-channel subjected to wall-normal system rotation are conducted using direct numerical simulation (DNS). In order to investigate the influence of system rotation on the temperature field, a wide range of rotation numbers are tested, with the flow pattern transitioning from being fully turbulent to being quasilaminar, and eventually, fully laminar. In response to the Coriolis force, secondary flows appear as large vortical structures, which interact intensely with the wall shear layers and have a significant impact on the distribution of turbulence kinetic energy (TKE), turbulence scalar energy (TSE), temperature statistics, and turbulent heat fluxes. The characteristic length scales of turbulence structures responsible for the transport of TSE are the largest at the quasilaminar state, which demands a very large computational domain in order to capture the two-dimensional spectra of temperature fluctuations. The effects of the Coriolis force on the turbulent transport processes of the temperature variance and turbulent heat fluxes are thoroughly examined in terms of their respective budget balances.  相似文献   

10.
热湍流(浮力驱动湍流)作为一种典型的湍流现象,广泛存在于自然界和工程应用中. Rayleigh-Bénard (RB)湍流是从众多自然现象中抽象出来研究热湍流的经典模型, RB湍流的典型特征是系统中存在大尺度环流和羽流等不同尺度的湍流结构,这些结构通过作用于边界层,影响RB湍流的输运效率.因此,明确不同尺度湍流结构的生成、演化和作用机理,对理解RB湍流的输运特性至关重要,也是通过控制湍流结构调控输运效率的科学基础.本文重点从湍流结构的时空演化规律、输运特性、湍流调控和热湍流在其他领域的拓展四个方面评述近十年来RB湍流研究所取得的新进展,并对今后的研究方向做出展望.  相似文献   

11.
Two methods of recovering the entire total shear stress profile from incomplete velocity data in turbulent boundary layers are presented and validated for both DNS simulations and experimental measurements. The first method, an exponential–polynomial curve fit, recovers the whole total shear stress profile using the data from the outer part of the boundary layer (y/δ>0.3). However, while performing well, this curve fit is sensitive to the quality of the data. The second method, a new (1−y/δ) weighted straight line fit, which is very simple and accurate, has been applied to current experiments of drag reduction in zero pressure gradient turbulent boundary layers with and without polymer injection. The total shear stress profile obtained from this fit is used to estimate the contribution of the polymer stress to the total shear stress. It shows that the polymer stress is significant only in the inner part of the boundary layer and the magnitude of the polymer stress is not always proportional to the drag reduction.  相似文献   

12.
Different near-wall scalings are reviewed by the use of data from direct numerical simulations (DNS) of attached and separated adverse pressure gradient turbulent boundary layers. The turbulent boundary layer equation is analysed in order to extend the validity of existing wall damping functions to turbulent boundary layers under severe adverse pressure gradients. A proposed near-wall scaling is based on local quantities and the wall distance, which makes it applicable for general computational fluid dynamics (CFD) methods. It was found to have a similar behaviour as the pressure-gradient corrected analytical y* scaling and avoids the inconsistencies present in the y+ scaling. The performance of the model is illustrated by model computations using explicit algebraic Reynolds stress models with near-wall damping based on different scalings.  相似文献   

13.
A three-dimensional Direct Numerical Simulation (DNS) of a laminar separation bubble in the presence of oscillating flow is performed. The oscillating flow induces a streamwise pressure gradient varying in time. The special shape of the upper boundary of the computational domain, together with the oscillating pressure gradient causes the boundary layer flow to alternately separate and re-attach. When the inflow decelerates, the shear layer starts to separate and rolls up. Simultaneously the flow becomes 3D. After a transient period, the phase-averaged reverse flow inside the separation bubble reaches speeds ranging from 20 up to 150% of the free-stream velocity. During these phases, the flow is absolutely unstable and self-sustained turbulence can exist. When the inflow starts to accelerate, a spanwise roll of turbulent flow is shed from the shear layer. Shortly after this, the remainder of the separation bubble moves downstream and rejoins with the shed turbulent roll. During the flow-acceleration phase, a patch of laminar boundary layer flow is obtained. Along the flat plate, a series of turbulent patches of flow travelling downstream, separated by laminar flow can be observed, reminiscent of boundary layer flow in a turbine cascade with periodically appearing free-stream disturbances.  相似文献   

14.
A method is described for calculating turbulent Prandtl numbers from Mach number and total temperature profiles in supersonic boundary layers. The calculations are based on boundary layer measurements in the Mach number range from 3.5 to 5. The investigations clearly indicate that in addition to accurate profile measurements reliable values of shear stress and heat flux at the wall must exist, in order to be able to calculate the turbulent Prandtl number in the viscous regime of the boundary layer. For flow conditions with and without heat transfer, the derived turbulent Prandtl numbers indicate that the turbulent transport of heat decreases much faster towards the wall than the turbulent transport of momentum. The results of the analysis show that only the unequivocal qualitative result of increasing turbulent Prandtl numbers in the viscous region of the boundary layer, can be expected. The variation of the turbulent Prandtl number can be described successfully using a simple approximation, based on the mixing length concept, and is applied to the calculation of total temperature distribution using the law of the wall for compressible flow.  相似文献   

15.
Direct numerical simulation (DNS) and experimental data have shown that inertial particles exhibit concentration peaks in isothermal turbulent boundary layers, whereas tracer-like particles remain well mixed in the domain. It is therefore expected that the interactions between turbulence and thermophoresis will be strong in particle-laden flows where walls and carrier fluid are at significantly different temperatures. To capture turbulent particle dispersion with active thermophoresis, a coupled CFD-Lagrangian continuous random walk (CRW) model is developed. The model uses 3D mean flow velocities obtained from the Fluent 6.3 CFD code, to which are added turbulent fluid velocities derived from the normalized Langevin equation which accounts for turbulence inhomogeneities. The mean thermophoretic force is included as a body force on the particle following the Talbot formulation. Validation of the model is performed against recent integral thermophoretic deposition data in long pipes as well as the TUBA TT28 test with its detailed local deposition measurements. In all cases, the agreement with the data is very good. In separate parametric studies in a hypothetical cooled channel flow, it is found that turbulence strongly enhances thermophoretic deposition of particles with dimensionless relaxation times τ+ of order 1 or more. On the other hand, the thermophoretic deposition of very small inertia particles (τ+ < 0.2) in the asymptotic region far from the injection point tends to that which characterizes stagnant flow conditions, in agreement with the DNS results of Thakurta et al.  相似文献   

16.
梁霆浩  余锡平 《力学学报》2016,48(2):473-481
海岸热力内边界层内大气在热力驱动下产生垂向对流运动,对海岸带的大气运动规律产生深刻的影响.在海岸城市地区,受城市冠层复杂结构的影响,热力内边界层呈现诸多独特的性质.采用大涡模拟的方法,研究了海岸城市热力内边界层内的流动特征.将海岸城市建筑物拟形为一系列有序排列的立方体块,并基于浸入边界方法考虑其对大气流动的影响.和常见的区域尺度数值研究中将城市下垫面假设为均质属性平面的方法相比,模拟结果的精度明显提高,海岸热力内边界层内各种尺度的动力过程也能在一定程度上得以描述.模拟计算了海岸城市热力内边界层、中性海岸城市边界层和开阔的自然海岸热力内边界层共3种情况,对比研究了城市摩阻和海岸热力作用对海岸城市上空大气运动的影响.研究结果表明:在空间上,边界层中各紊流特征量均在街谷尺度呈现出有规律而非均匀分布的特点;在强度上,热力作用与城市构筑物的摩阻作用相互促进,使得紊流强度显著提升并大于两种作用线性叠加的结果.此外,还发现有城市冠层海岸的热力内边界层发展远快于相同热力条件下的自然海岸带,边界层的发展规律也有显著的不同.   相似文献   

17.
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder1 and followers2,3,4,5. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterised by Kolmogorov microscales. According t o this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become “Kolmogorov” eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As a n example, the concept is incorporated in the standard κ - εmodel which is then applied t o channel and boundary layer flows. Using appropriate boundary conditions (based on Kolmogorov behaviour of near-wall turbulence), there is no need for any wall-modification to the κ - ε equations (including model constants). Results compare very well with the DNS and experimental data.  相似文献   

18.
Direct numerical simulation (DNS) results are used to establish the effect of convex streamwise curvature on the development of turbulent boundary layers, and the effect of such curvature on the forced-convection heat transfer variations observed at certain supercritical thermodynamic states. The results illustrate the stabilizing effects of this flow geometry through modification of the structure and distribution of hairpin-like vortical flow structures in the boundary layer. Furthermore, enhancement of convective heat transfer realized at a particular heat flux-to-mass flux ratio with the working fluid at a supercritical state is observed to be reduced by the stabilizing effect of convex surface curvature.  相似文献   

19.
20.
It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e N method, especially when the boundary layer varies significantly in the spanwise direction. The 3D-linear parabolized stability equation (3D-LPSE) approach, a 3D extension of the two-dimensional LPSE (2D-LPSE), is developed with a plane-marching procedure for investigating the instability of a 3D boundary layer with a significant spanwise variation. The method is suitable for a full Mach number region, and is validated by computing the unstable modes in 2D and 3D boundary layers, in both global and local instability problems. The predictions are in better agreement with the ones of the direct numerical simulation (DNS) rather than a 2D-eigenvalue problem (EVP) procedure. These results suggest that the plane-marching 3D-LPSE approach is a robust, efficient, and accurate choice for the local and global instability analysis in 2D and 3D boundary layers for all free-stream Mach numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号