首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It is conjectured that the set ${\mathcal {G}}$ of the primitive roots modulo p has no decomposition (modulo p) of the form ${\mathcal {G}= \mathcal {A} +\mathcal {B}}$ with ${|\mathcal {A}|\ge 2}$ , ${|\mathcal {B} |\ge 2}$ . This conjecture seems to be beyond reach but it is shown that if such a decomposition of ${\mathcal {G}}$ exists at all, then ${|\mathcal {A} |}$ , ${|\mathcal {B} |}$ must be around p 1/2, and then this result is applied to show that ${\mathcal {G}}$ has no decomposition of the form ${\mathcal {G} =\mathcal {A} + \mathcal {B} + \mathcal {C}}$ with ${|\mathcal {A} |\ge 2}$ , ${|\mathcal {B} |\ge 2}$ , ${|\mathcal {C} |\ge 2}$ .  相似文献   

2.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

3.
Conservative subtheories of ${{R}^{1}_{2}}$ and ${{S}^{1}_{2}}$ are presented. For ${{S}^{1}_{2}}$ , a slight tightening of Je?ábek??s result (Math Logic Q 52(6):613?C624, 2006) that ${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$ is presented: It is shown that ${T^{0}_{2}}$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this ${\forall\Sigma^{b}_{1}}$ -theory, we define a ${\forall\Sigma^{b}_{0}}$ -theory, ${T^{-1}_{2}}$ , for the ${\forall\Sigma^{b}_{0}}$ -consequences of ${S^{1}_{2}}$ . We show ${T^{-1}_{2}}$ is weak by showing it cannot ${\Sigma^{b}_{0}}$ -define division by 3. We then consider what would be the analogous ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ based on Pollett (Ann Pure Appl Logic 100:189?C245, 1999. It is shown that this theory, ${{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}$ , also cannot ${\Sigma^{b}_{0}}$ -define division by 3. On the other hand, we show that ${{S}^{0}_{2}+open_{\{||id||\}}}$ -COMP is a ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ . Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium?? 98, 262?C279, 2000) and show that ${\hat{C}^{0}_{2}}$ is ${\forall\hat\Sigma^{b}_{1}}$ -conservative over a theory based on open cl-comprehension.  相似文献   

4.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

5.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

6.
In this paper, we prove stability of contact discontinuities for full Euler system. We fix a flat duct ${\mathcal{N}_0}$ of infinite length in ${\mathbb{R}^2}$ with width W 0 and consider two uniform subsonic flow ${{U_l}^{\pm}=(u_l^{\pm}, 0, pl,\rho_l^{\pm})}$ with different horizontal velocity in ${\mathcal{N}_0}$ divided by a flat contact discontinuity ${\Gamma_{cd}}$ . And, we slightly perturb the boundary of ${\mathcal{N}_0}$ so that the width of the perturbed duct converges to ${W_0+\omega}$ for ${|\omega| < \delta}$ at ${x=\infty}$ for some ${\delta >0 }$ . Then, we prove that if the asymptotic state at left far field is given by ${{U_l}^{\pm}}$ , and if the perturbation of boundary of ${\mathcal{N}_0}$ and ${\delta}$ is sufficiently small, then there exists unique asymptotic state ${{U_r}^{\pm}}$ with a flat contact discontinuity ${\Gamma_{cd}^*}$ at right far field( ${x=\infty}$ ) and unique weak solution ${U}$ of the Euler system so that U consists of two subsonic flow with a contact discontinuity in between, and that U converges to ${{U_l}^{\pm}}$ and ${{U_r}^{\pm}}$ at ${x=-\infty}$ and ${x=\infty}$ respectively. For that purpose, we establish piecewise C 1 estimate across a contact discontinuity of a weak solution to Euler system depending on the perturbation of ${\partial\mathcal{N}_0}$ and ${\delta}$ .  相似文献   

7.
The present paper proposes a general theory for $\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) $ -complete partially ordered sets (alias $\mathcal{Z} _{1}$ -join complete and $\mathcal{Z}_{2}$ -meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections $\mathcal{Z}_{i}$ (i?=?1,...,4) and $\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) $ , the category $\mathcal{Q}$ P of $\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) $ -complete partially ordered sets and $\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) $ -continuous (alias $\mathcal{ Z}_{3}$ -join preserving and $\mathcal{Z}_{4}$ -meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category $\mathcal{Q}$ S of $\mathcal{Q}$ -spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory $ \mathcal{Q}$ P s of $\mathcal{Q}$ P of all $\mathcal{Q}$ -spatial objects and the full subcategory $\mathcal{Q}$ S s of $\mathcal{Q}$ S of all $\mathcal{Q}$ -sober objects. Here $\mathcal{Q}$ -spatiality and $\mathcal{Q}$ -sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to $\mathcal{Z}$ -compact generation and $\mathcal{Z}$ -sobriety have also been pointed out in this paper.  相似文献   

8.
We consider the pseudo-euclidean space ${(\mathbb{R}^n, g)}$ , with n ≥  3 and ${g_{ij} = \delta_{ij} \varepsilon_i, \varepsilon_i = \pm 1}$ and tensors of the form ${T = \sum \nolimits_i \varepsilon_i f_i (x) dx_i^2}$ . In this paper, we obtain necessary and sufficient conditions for a diagonal tensor to admit a metric ${\bar{g}}$ , conformal to g, so that ${A_{\bar g}=T}$ , where ${A_{\bar g}}$ is the Schouten Tensor of the metric ${\bar g}$ . The solution to this problem is given explicitly for special cases for the tensor T, including a case where the metric ${\bar g}$ is complete on ${\mathbb{R}^n}$ . Similar problems are considered for locally conformally flat manifolds. As an application of these results we consider the problem of finding metrics ${\bar g}$ , conformal to g, such that ${\sigma_2 ({\bar g })}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })}}$ is equal to a given function. We prove that for some functions, f 1 and f 2, there exist complete metrics ${\bar{g} = g/{\varphi^2}}$ , such that ${\sigma_2 ({\bar g }) = f_1}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })} = f_2}$ .  相似文献   

9.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

10.
We prove a new local inequality for divisors on surfaces and utilize it to compute α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one whose singular points are of type $\mathbb{A}_{1}$ , $\mathbb{A}_{2}$ , $\mathbb{A}_{3}$ , $\mathbb{A}_{4}$ , $\mathbb{A}_{5}$ , or $\mathbb{A}_{6}$ are Kähler-Einstein.  相似文献   

11.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

12.
In this paper we provide a first realization of an idea of Jacques Tits from a 1956 paper, which first mentioned that there should be a field of charactéristique une, which is now called ${\mathbb{F}_1}$ , the field with one element. This idea was that every split reductive group scheme over ${\mathbb{Z}}$ should descend to ${\mathbb{F}_1}$ , and its group of ${\mathbb{F}_1}$ -rational points should be its Weyl group. We connect the notion of a torified scheme to the notion of ${\mathbb{F}_1}$ -schemes as introduced by Connes and Consani. This yields models of toric varieties, Schubert varieties and split reductive group schemes as ${\mathbb{F}_1}$ -schemes. We endow the class of ${\mathbb{F}_1}$ -schemes with two classes of morphisms, one leading to a satisfying notion of ${\mathbb{F}_1}$ -rational points, the other leading to the notion of an algebraic group over ${\mathbb{F}_1}$ such that every split reductive group is defined as an algebraic group over ${\mathbb{F}_1}$ . Furthermore, we show that certain combinatorics that are expected from parabolic subgroups of GL(n) and Grassmann varieties are realized in this theory.  相似文献   

13.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

14.
We provide a matrix invariant for isometry classes of p-tuples of points in the Grassmann manifold ${G_{n}\left(\mathbb{K}^{d}\right) }$ ( ${\mathbb{K=\mathbb{R}}}$ or ${\mathbb{C}}$ ). This invariant fully characterizes the p-tuple. We use it to classify the regular p-tuples of ${G_{2}\left(\mathbb{R}^{d}\right) }$ , ${G_{3}\left( \mathbb{R}^{d}\right) }$ and ${G_{2}\left( \mathbb{C}^{d}\right) }$ .  相似文献   

15.
Suppose that n is even. Let ${\mathbb{F}_2}$ denote the two-element field and ${\mathbb{Z}}$ the set of integers. Bent functions can be defined as ± 1-valued functions on ${\mathbb{F}_2^n}$ with ± 1-valued Fourier transform. More generally we call a mapping f on ${\mathbb{F}_2^n}$ a ${\mathbb{Z}}$ -bent function if both f and its Fourier transform ${\widehat{f}}$ are integer-valued. ${\mathbb{Z}}$ -bent functions f are separated into different levels, depending on the size of the maximal absolute value attained by f and ${\widehat{f}}$ . It is shown how ${\mathbb{Z}}$ -bent functions of lower level can be built up recursively by gluing together ${\mathbb{Z}}$ -bent functions of higher level. This recursion comes down at level zero, containing the usual bent functions. In the present paper we start to study bent functions in the framework of ${\mathbb{Z}}$ -bent functions and give some guidelines for further research.  相似文献   

16.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

17.
Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

18.
Let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{k}$ be a reductive subalgebra in $\mathfrak{g}$ . We say that a $\mathfrak{g}$ -module M is a $(\mathfrak{g},\mathfrak{k})$ -module if M, considered as a $\mathfrak{k}$ -module, is a direct sum of finite-dimensional $\mathfrak{k}$ -modules. We say that a $(\mathfrak{g},\mathfrak{k})$ -module M is of finite type if all $\mathfrak{k}$ -isotopic components of M are finite-dimensional. In this paper we prove that any simple $(\mathfrak{g},\mathfrak{k})$ -module of finite type is holonomic. A simple $\mathfrak{g}$ -module M is associated with the invariants V(M), V(LocM), and L(M) reflecting the ??directions of growth of M.?? We also prove that for a given pair $(\mathfrak{g},\mathfrak{k})$ the set of possible invariants is finite.  相似文献   

19.
We investigate the relation between the cone ${\mathcal{C}^{n}}$ of n × n copositive matrices and the approximating cone ${\mathcal{K}_{n}^{1}}$ introduced by Parrilo. While these cones are known to be equal for n ≤ 4, we show that for n ≥ 5 they are not equal. This result is based on the fact that ${\mathcal{K}_{n}^{1}}$ is not invariant under diagonal scaling. We show that for any copositive matrix which is not the sum of a nonnegative and a positive semidefinite matrix we can find a scaling which is not in ${\mathcal{K}_{n}^{1}}$ . In fact, we show that if all scaled versions of a matrix are contained in ${\mathcal{K}_{n}^{r}}$ for some fixed r, then the matrix must be in ${\mathcal{K}_{n}^{0}}$ . For the 5 × 5 case, we show the more surprising result that we can scale any copositive matrix X into ${\mathcal{K}_{5}^{1}}$ and in fact that any scaling D such that ${(DXD)_{ii} \in \{0,1\}}$ for all i yields ${DXD \in \mathcal{K}_{5}^{1}}$ . From this we are able to use the cone ${\mathcal{K}_{5}^{1}}$ to check if any order 5 matrix is copositive. Another consequence of this is a complete characterisation of ${\mathcal{C}^{5}}$ in terms of ${\mathcal{K}_{5}^{1}}$ . We end the paper by formulating several conjectures.  相似文献   

20.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号