首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates the existence of monotonic traveling wave and standing wave solutions of RTD-based cellular neural networks in the one-dimensional integer lattice . For nonzero wave speed c, applying the monotone iteration method with the aid of real roots of the corresponding characteristic function of the profile equation, we can partition the parameter space (γ,δ)-plane into four regions such that all the admissible monotonic traveling wave solutions connecting two neighboring equilibria can be classified completely. For the case of c=0, a discrete version of the monotone iteration scheme is established for proving the existence of monotonic standing wave solutions. Furthermore, if γ or δ is zero then the profile equation for the standing waves can be viewed as an one-dimensional iteration map and we then prove the multiplicity results of monotonic standing waves by using the techniques of dynamical systems for maps. Some numerical results of the monotone iteration scheme for traveling wave solutions are also presented.  相似文献   

2.
Two iteration methods are proposed to solve real nonsymmetric positive definite Toeplitz systems of linear equations. These methods are based on Hermitian and skew-Hermitian splitting (HSS) and accelerated Hermitian and skew-Hermitian splitting (AHSS). By constructing an orthogonal matrix and using a similarity transformation, the real Toeplitz linear system is transformed into a generalized saddle point problem. Then the structured HSS and the structured AHSS iteration methods are established by applying the HSS and the AHSS iteration methods to the generalized saddle point problem. We discuss efficient implementations and demonstrate that the structured HSS and the structured AHSS iteration methods have better behavior than the HSS iteration method in terms of both computational complexity and convergence speed. Moreover, the structured AHSS iteration method outperforms the HSS and the structured HSS iteration methods. The structured AHSS iteration method also converges unconditionally to the unique solution of the Toeplitz linear system. In addition, an upper bound for the contraction factor of the structured AHSS iteration method is derived. Numerical experiments are used to illustrate the effectiveness of the structured AHSS iteration method.  相似文献   

3.
Interior and exterior three-dimensional Dirichlet problems for the Helmholtz equation are solved numerically. They are formulated as equivalent boundary Fredholm integral equations of the first kind and are approximated by systems of linear algebraic equations, which are then solved numerically by applying an iteration method. The mosaic-skeleton method is used to speed up the solution procedure.  相似文献   

4.
Recently, by applying the minimum residual technique to the Hermitian and skew-Hermitian splitting (HSS) iteration scheme, a minimum residual HSS (MRHSS) iteration method was proposed for solving non-Hermitian positive definite linear systems. Although the MRHSS iteration method is very efficient, it is conditionally convergent. In this work, we further study the convergence of the MRHSS iteration method, and show that it can unconditionally convergent if its parameters are determined by minimizing a new norm of the residual. Numerical results verify that the MRHSS method discussed in this work is also very efficient.  相似文献   

5.
Nonlinear elastic problems for hardening media are solved by applying the universal iteration process proposed by A.I. Koshelev in his works on the regularity of solutions to quasilinear elliptic and parabolic systems. This requires numerically solving a linear elliptic system at each step of the iteration procedure. The method is numerically implemented in the MATLAB environment by using its PDE Toolbox. A modification of the finite-element procedure is suggested in order to solve a linear algebraic system at each iteration step. The computer model is tested on simple examples. The same nonlinear problems are also solved by the method of elastic solutions, which consists in replacing the Laplace operator in the universal iteration process by the Lamé operator of linear elasticity. As is known, this iteration process converges to a weak solution of the nonlinear problem, provided that the displacements are fixed on the boundary. The method is tested on examples with stresses on the boundary. The third part of the paper is devoted to the nonlinear filtration problem. General properties of the iteration process for nonlinear parabolic systems have been studied by A.I. Koshelev and V.M. Chistyakov. The numerical implementation is based on slightly modified PDE Toolbox procedures. The program is tested on simple examples.  相似文献   

6.
Bai  Zhong-Zhi 《Numerical Algorithms》1997,15(3-4):347-372
The finite difference or the finite element discretizations of many differential or integral equations often result in a class of systems of weakly nonlinear equations. In this paper, by reasonably applying both the multisplitting and the two-stage iteration techniques, and in accordance with the special properties of this system of weakly nonlinear equations, we first propose a general multisplitting two-stage iteration method through the two-stage multiple splittings of the system matrix. Then, by applying the accelerated overrelaxation (AOR) technique of the linear iterative methods, we present a multisplitting two-stage AOR method, which particularly uses the AOR-like iteration as inner iteration and is substantially a relaxed variant of the afore-presented method. These two methods have a forceful parallel computing function and are much more suitable to the high-speed multiprocessor systems. For these two classes of methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some suitable assumptions when the involved nonlinear mapping is only directionally differentiable. When the system matrix is either an H-matrix or a monotone matrix, and the nonlinear mapping is a P-bounded mapping, we thoroughly set up the global convergence theories of these new methods. Moreover, under the assumptions that the system matrix is monotone and the nonlinear mapping is isotone, we discuss the monotone convergence properties of the new multisplitting two-stage iteration methods, and investigate the influence of the multiple splittings as well as the relaxation parameters upon the convergence behaviours of these methods. Numerical computations show that our new methods are feasible and efficient for parallel solving of the system of weakly nonlinear equations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper studies the iterative solutions of Lyapunov matrix equations associated with Itô stochastic systems having Markovian jump parameters. For the discrete-time case, when the associated stochastic system is mean square stable, two iterative algorithms with one in direct form and the other one in implicit form are established. The convergence of the implicit iteration is proved by the properties of some positive operators associated with the stochastic system. For the continuous-time case, a transformation is first performed so that it is transformed into an equivalent discrete-time Lyapunov equation. Then the iterative solution can be obtained by applying the iterative algorithm developed for discrete-time Lyapunov equation. Similar to the discrete-time case, an implicit iteration is also proposed for the continuous case. For both discrete-time and continuous-time Lyapunov equations, the convergence rates of the established algorithms are analyzed and compared. Numerical examples are worked out to validate the effectiveness of the proposed algorithms.  相似文献   

9.
张宇  张关泉 《计算数学》1997,19(3):293-304
1.引言一位早期的地球物理学家Noah曾经设想将船和电缆沉入海底采集数据,以避免由海面反射所形成的多次波混响,从而得到更为理想的地震勘探剖面,但是这一方法在实践中是很难实现的.1974年,Ril6y博士[6]从地震波的物理机制出发,提出了一种消除多次波的反卷积方法,可以通过资料处理来实现这个思想.在一继波动方程反问题的研究中,我们重新发现了这一方法[7];称之为消除多次波方法.方法的基本思想是根据自由表面反射波响应与激发波响应之间的相似关系,通过变换来消除多次波混响,从而近似地得到所需的反射系数信息.与Riley…  相似文献   

10.
ON INTERACTION OF SHOCK AND SOUND WAVE (I)   总被引:1,自引:1,他引:0  
This paper studies the interaction of shock and gradient wave (sound wave) of solutions to the system of inviscid isentropic gas dynamics as a model for the corresponding problems for nonlinear hyperbolic systems. The problem can be reduced to a boundary value problem in a wedged dormain, By using the method of constructing asymptotic solutions and Newton‘siteration process it is proved that if a weak shock hits a gradient wave, then the grandient wave will split into two gradient waves, while the shock continuses propagating. In this paper the author reduces the problem to a standard form and constructs asymptotic solution of the problem. The existence of the genuine solution will he given in the following paper.  相似文献   

11.
We propose a way to reformulate a conic system of constraints as an optimization problem. When an appropriate interior-point method (ipm) is applied to the reformulation, the ipm iterates yield backward-approximate solutions, that is, solutions for nearby conic systems. In addition, once the number of ipm iterations passes a certain threshold, the ipm iterates yield forward-approximate solutions, that is, points close to an exact solution of the original conic system. The threshold is proportional to the reciprocal of distance to ill-posedness of the original conic system.?The condition numbers of the linear equations encountered when applying an ipm influence the computational cost at each iteration. We show that for the reformulation, the condition numbers of the linear equations are uniformly bounded both when computing reasonably-accurate backward-approximate solutions to arbitrary conic systems and when computing forward-approximate solutions to well-conditioned conic systems. Received: July 11, 1997 / Accepted: August 18, 1999?Published online March 15, 2000  相似文献   

12.
In this paper, He’s variational iteration method is employed to construct periodic wave and solitary wave solutions for the long–short wave resonance equations. The chosen initial solution can be in soliton form with some unknown parameters, which can be determined in the solution procedure. Some examples are given. The results reveal that the method is very effective and convenient.  相似文献   

13.
1.IntroductionRecentlythestudyofdiscontinuoussolutionforthesystemofconservationlawsinhigherdimensionalspacehasbeenconsiderablydeveloped.In[1,W12]thelocalekistenceof8olutionforsuclisystemwithdiscontinuityinvolvingsingleshock,rarefactionwaveorsoundwav(gradientwave)hasbeenestablished.In[2Jand[14]theproblemsoninteractionoftwoshocksorinteractionofweaksingularitiesarealsoconsidered.Itisnaturaltoaskwhatabouttheresultwhenashockisinteractedbyawavewitliweakersillgularities,particularly,forthenbynsystem…  相似文献   

14.
We consider implicit integration methods for the numerical solution of stiff initial-value problems. In applying such methods, the implicit relations are usually solved by Newton iteration. However, it often happens that in subintervals of the integration interval the problem is nonstiff or mildly stiff with respect to the stepsize. In these nonstiff subintervals, we do not need the (expensive) Newton iteration process. This motivated us to look for an iteration process that converges in mildly stiff situations and is less costly than Newton iteration. The process we have in mind uses modified Newton iteration as the outer iteration process and a linear solver for solving the linear Newton systems as an inner iteration process. This linear solver is based on an approximate factorization of the Newton system matrix by splitting this matrix into its lower and upper triangular part. The purpose of this paper is to combine fixed point iteration, approximate factorization iteration and Newton iteration into one iteration process for use in initial-value problems where the degree of stiffness is changing during the integration.  相似文献   

15.
A method for the parameterization of the one-dimensional wave equation is proposed that makes it possible to find its solution by quadratures under an arbitrary dependence of the refraction index on the current wave phase. The form of the solution found is used to investigate the structure of the wave function for a periodic refraction index. Explicit expressions for the fundamental system of solutions and for the Floquet index are obtained. Examples of applying the proposed method to the optimal synthesis of multilayer interference mirrors and Bragg waveguides are discussed.  相似文献   

16.
In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the solution domain. The purpose of our paper is to construct a numerical algorithm for solving the inverse problem by an iterative method called a method of simple iteration (MSI) and to study the resolution quality of the inverse problem as a function of the number and location of measurement points. Three two-dimensional inverse problem formulations are considered. The results of our numerical calculations are presented. It is shown that the MSI decreases the objective functional at each iteration step. However, due to the ill-posedness of the inverse problem the difference between the exact and approximate solutions decreases up to some fixed number k min, and then monotonically increases. This shows the regularizing properties of the MSI, and the iteration number can be considered a regularization parameter.  相似文献   

17.
The monotone iteration method is employed to establish the existence of traveling wave fronts in delayed reaction-diffusion systems with monostable nonlinearities.

  相似文献   


18.
We apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems increases linearly with the number of stages of the underlying Runge-Kutta method, resulting in high linear algebra costs in the iterative process for high-order Runge-Kutta methods. In our earlier investigations of iterative solvers for implicit initial-value problems, we designed an iteration method in which the linear algebra costs are almost independent of the number of stages when implemented on a parallel computer system. In this paper, we use this parallel iteration process in the Runge-Kutta waveform relaxation method. In particular, we analyse the convergence of the method. The theoretical results are illustrated by a few numerical examples.  相似文献   

19.
This paper is concerned with the existence and non-existence of traveling wave solutions of reaction-diffusion-advection equation with boundary conditions of mixed type in unbounded cylinder. By constructing new supper-sub solutions and applying monotone iteration method, we obtain existence of traveling wave solutions with wave velocity bigger than the “minimal speed”. For wave velocity smaller than the “minimal speed”, we find that traveling waves of exponential decay do not exist. Finally, we apply our results to KPP type nonlinearity.  相似文献   

20.

The main aim of this paper is to study the exact traveling wave solutions of the generalized Kudryashov–Sinelshchikov equation by using the auxiliary equation method based on the conclusion of qualitative analysis. The advantage of this method is to choose the effective and proper auxiliary equation on the base of the behaviors and traits of solutions revealed by analysis of phase portraits to study the solution of differential equations. By applying the proposed approach to the generalized Kudryashov–Sinelshchikov equation, the number, behavior and existence of smooth and non-smooth traveling wave solutions are gained, at the same time, the new exact smooth solitary, periodic wave solutions and cusp solitary, periodic wave solutions are obtained. From the dynamic point of view, the behavior of traveling wave solutions is analyzed. The profile,type and the form of exact expression of traveling wave solutions are influenced by the order of nonlinear term and nonlinear terms.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号