首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The microwave spectrum of 1-thia-closo-decaborane(9), 1-SB(9)H(9), has been investigated in the 12-61 GHz spectral region. The molecule has C(4v) symmetry. The spectra of five isotopomers have been assigned, and a precise substitution structure of the non-hydrogen atoms has been determined. It was found that the axial sulfur atom causes a substantial expansion of the B(4) belt adjacent to sulfur and hence leads to a significant distortion from a regular bicapped square antiprismatic structure. The experimental work has been supplemented by high-level ab initio (MP2/6-311G**) and density functional theory calculations (B3LYP/6-311G** and B3LYP/cc-pVTZ). The agreement between the substitution structure and the two DFT calculations is very good in each case. The agreement is considerably poorer for the MP2/6-311G** calculations, particularly for the sulfur-boron bond length.  相似文献   

2.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

3.
Accurate equilibrium structures have been determined for (Z)-pent-2-en-4-ynenitrile (8) and maleonitrile (9) by combining microwave spectroscopy data and ab initio quantum chemistry calculations. The microwave spectra of 10 isotopomers of 8 and 5 isotopomers of 9 were obtained using a pulsed nozzle Fourier transform microwave spectrometer. The ground-state rotational constants were adjusted for vibration-rotation interaction effects calculated from force fields obtained from ab initio calculations. The resultant equilibrium rotational constants were used to determine structures that are in very good agreement with those obtained from high-level ab initio calculations (CCSD(T)/cc-pVTZ). The geometric parameters in 8 and 9 are very similar; they also do not differ significantly from the all-carbon analogue, (Z)-hex-3-ene-1,5-diyne (7), the parent molecule for the Bergman cyclization. A small deviation from linearity about the alkyne and cyano linkages is observed for 7-9 and several related species where accurate equilibrium parameters are available. The data on 7-9 should be of interest to radioastronomy and may provide insights on the formation and interstellar chemistry of unsaturated species such as the cyanopolyynes.  相似文献   

4.
The microwave spectrum of 2-chloroacetamide (ClCH2CONH2) has been investigated at room temperature in the 19-80 spectral range. Spectra of the 35ClCH2CONH2 and 37ClCH2CONH2 isotopomers of one conformer, which has a symmetry plane (Cs symmetry), were assigned. The amide group is planar, and an intramolecular hydrogen bond is formed between the chlorine atom and the nearest hydrogen atom of the amide group. The ground vibrational state, six vibrationally excited states of the torsional vibration about the CC bond, as well as the first excited state of the lowest bending mode were assigned for the 35ClCH2CONH2 isotopomer, whereas the ground vibrational state of 37ClCH2CONH2 was assigned. The CC torsional fundamental vibration has a frequency of 62(10) cm(-1), and the bending vibration has a frequency of 204(30) cm(-1). The rotational constants of the ground and of the six excited states of the CC torsion were fitted to the potential function Vz = 16.1( + 2.3) cm(-1), where z is a dimensionless parameter. This function indicates that the equilibrium conformation has Cs symmetry. Rough values of the chlorine nuclear quadrupole coupling constants were derived as chi(aa) = -47.62(52) and chi(bb) = 8.22(66) MHz for the 35Cl nucleus and chi(aa) = -34.6(10) and chi(bb) = 6.2(11) MHz for the 37Cl nucleus. Ab initio and density functional theory quantum chemical calculations have been performed at several levels of theory to evaluate the equilibrium geometry of this compound. The density functional theory calculations at the B3LYP/6-311++G(3df,2pd) and B3LYP/cc-pVTZ levels of theory as well as ab initio calculations at the MP2(F)/cc-pVTZ level predict correct lowest-energy conformation for the molecule, whereas the ab initio calculations at the QCISD(FC)/6-311G(d) and MP2(F)/6-311++G(d,p) levels predict an incorrect equilibrium conformation.  相似文献   

5.
The rotational spectra of the (20)Ne and (22)Ne isotopomers of the Ne-dimethyl sulfide (DMS) rare gas dimer have been measured by Fourier transform microwave spectroscopy. MP2/6-311++G(2d,2p) calculations, and the experimental spectroscopic data, suggest a structure of C(s) symmetry in which the Ne atom lies above the heavy atom plane of the DMS (in the sigma(v) plane which bisects the CSC angle). Experimental rotational constants are consistent with a S...Ne distance of 3.943(6) Angstroms and a (cm...S...Ne) angle of 63.2(6) degrees (where cm is the center of mass of DMS). A motion of the Ne atom from one side of the DMS to the other gives rise to inversion splittings of around 3 MHz in the c-type transitions. An ab initio potential energy surface calculation has allowed examination of several possible tunneling pathways, and suggests a barrier of between 20 and 40 cm(-1) for the inversion motion, depending on the tunneling pathway taken by the Ne. Dipole moment measurements are consistent with both the experimental and ab initio structures.  相似文献   

6.
The equilibrium molecular structures of the two lowest-energy conformers of glycine, Gly-Ip and Gly-IIn, have been characterized by high-level ab initio electronic structure computations, including all-electron cc-pVTZ CCSD(T) geometry optimizations and 6-31G* MP2 quartic force fields, the latter to account for anharmonic zero-point vibrational effects to isotopologic rotational constants. Based on experimentally measured vibrationally averaged effective rotational constant sets of several isotopologues and our ab initio data for structural constraints and zero-point vibrational shifts, least-squares structural refinements were performed to determine improved Born-Oppenheimer equilibrium (r(e)) structures of Gly-Ip and Gly-IIn. Without the ab initio constraints even the extensive set of empirical rotational constants available for 5 and 10 isotopologues of Gly-Ip and Gly-IIn, respectively, cannot satisfactorily fix their molecular structure. Excellent agreement between theory and experiment is found for the rotational constants of both conformers, the rms residual of the final fits being 7.8 and 51.6 kHz for Gly-Ip and Gly-IIn, respectively. High-level ab initio computations with focal point extrapolations determine the barrier to planarity separating Gly-IIp and Gly-IIn to be 20.5 +/- 5.0 cm(-1). The equilibrium torsion angle tau(NCCO) of Gly-IIn, characterizing the deviation of its heavy-atom framework from planarity, is (11 +/- 2) degrees. Nevertheless, in the ground vibrational state the effective structure of Gly-IIn has a plane of symmetry.  相似文献   

7.
IR and Raman spectra are reported for 1,1-difluorocyclopropane-d0, -d2, and -d4, and complete assignments of vibrational fundamentals are given for these species. These assignments are consistent with predictions of frequencies, intensities, and Raman depolarization ratios computed with the B3LYP/cc-pVTZ quantum chemical (QC) model. Ground state rotational constants for five 13C and deuterium isotopomers, obtained from published microwave spectra, were "corrected" into equilibrium rotational constants. The needed vibration-rotation interaction constants were computed with QC models after scaling the force constants. A semi-experimental equilibrium structure, fitted to the equilibrium moments of inertia, is rC1C = 1.470(1) A, rCC = 1.546(1) A, rCF = 1.343(1) A, rCH = 1.078(1) A, alphaFCF = 109.5(1), alphaFCC = 119.4(1) degrees, alphaHCH = 116.7(1) degrees, alphaC1CH = 117.4(1) degrees, and alphaCCH = 117.1(1) degrees. This structure agrees within the indicated uncertainties with the ab initio structure obtained from an extrapolated set of CCSD(T)/aug-cc-pVnZ calculations except for rCC = 1.548 A. The F2C-CH2 bonds are significantly shortened and strengthened; the H2C-CH2 bond is significantly lengthened and weakened.  相似文献   

8.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

9.
The infrared and Raman spectra of liquid and vapor gamma-crotonolactone have been collected. Both the experimental data and ab initio calculations show that the molecule is rigidly planar in its electronic ground state. This conclusion agrees with the previously reported microwave studies and is attributed to the conjugation between the C=C and C=O double bonds of the ring. The ring-puckering potential energy function was generated from ab initio calculations and was confirmed by the vapor-phase Raman spectra to be nearly harmonic. Density functional theory (DFT) calculations predict a harmonic ring-puckering frequency of 203 cm(-1) as compared to the observed vapor-phase Raman value of 208 cm(-1). The DFT calculations were also used to compute the infrared and Raman spectra of gamma-crotonolactone, and these agree very well with the experimental spectra.  相似文献   

10.
The infrared (3200-30 cm(-1) spectra of gaseous and solid, the Raman spectra (3200-30 cm(-1)) of the liquid and solid vinyl silyl bromide, CH2CHSiH2Br, have been recorded. Additionally, quantitative depolarization values have been obtained. Both the gauche and cis conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature studies from 0 to -87 degrees C of the Raman spectrum of the liquid was carried out. From these data, the enthalpy difference has been determined to be 22 +/- 6 cm(-1) (0.26 +/- 0.08 kJ/mol), with the gauche conformer being the more stable form. The predictions from the ab initio calculations up to MP2/6-311 + + G(2d,2p) basis set favor the gauche as the more stable form. A complete vibrational assignment is proposed for both the gauche and cis conformers based on infrared band contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations and the potential energy terms for the conformer interconversion have been obtained from the same calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311 + + G(2d,2p) at levels of restricted Hartree-Fock (RHF) and/or Moller-Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

11.
The microwave spectrum (6500-18 ,500 MHz) of 1-fluoro-1-silacyclopentane, c-C(4)H(8)SiHF has been recorded and 87 transitions for the (28)Si, (29)Si, (30)Si, and (13)C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm(-1)) of the gas and solid and Raman spectrum (3100-40 cm(-1)) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwave rotational constants for seven isotopomers ((28)Si, (29)Si, (30)Si, and four (13)C) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the twist conformer. The heavy atom distances in A? are: r(0)(SiC(2)) = 1.875(3); r(0)(SiC(3)) = 1.872(3); r(0)(C(2)C(4)) = 1.549(3); r(0)(C(3)C(5)) = 1.547(3); r(0)(C(4)C(5)) = 1.542(3); r(0)(SiF) = 1.598(3) and the angles in degrees are: [angle]CSiC = 96.7(5); [angle]SiC(2)C(4) = 103.6(5); [angle]SiC(3)C(5) = 102.9(5); [angle]C(2)C(4)C(5) = 108.4(5); [angle]C(3)C(5)C(4) = 108.1(5); [angle]F(6)Si(1)C(2) = 110.7(5); [angle]F(6)Si(1)C(3) = 111.6(5). The heavy atom ring parameters are compared to the corresponding r(s) parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

12.
The infrared (3200-40 cm(-1)) spectra of gaseous and solid 1,1-dicyclopropylethene, (c-C3H5)2C=CH2, along with the Raman (3200-40 cm(-1)) spectra of liquid and solid phases, have been recorded. The major trans-gauche (C=C bond trans to one ring with the other ring rotated about 60 degrees from the C=C bond, trivial C(1) symmetry) and gauche-gauche (the two three-membered rings rotated oppositely about 60 degrees from the C=C bond, C2 symmetry) rotamers have been confidently identified in the fluid phases, but no definitive spectroscopic evidence was found for the gauche-gauche' form (the two three-membered rings rotated to the same side about 60 degrees from the C=C bond, Cs symmetry), which is calculated to be present in no more than 6% at ambient temperature. Variable-temperature (-55 to -100 degrees C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. Utilizing six different combinations of pairs of bands from the C1 and C2 conformers, the average enthalpy difference between these two has been determined to be 146 +/- 30 cm(-1) (1.75 +/- 0.36 kJ x mol(-1)), with the C1 form more stable. Given statistical weights of 2:1:1 respectively for the C1, C2, and Cs forms, it is estimated that there are 75 +/- 2% C(1) and 19 +/- 1% C2 conformers present at ambient temperature. By utilizing predicted frequencies, infrared intensities, Raman activities, and band envelopes from scaled MP2(full)/6-31G(d) ab initio calculations, a complete vibrational assignment is made for the C1 form and a number of fundamentals of the C2 conformer have been identified. The structural parameters, dipole moments, and conformational stabilities have been obtained from ab initio calculations at the level of Hartree-Fock (RHF), the perturbation method to second order with full electron correlation (MP2(full)), and hybrid density functional theory (DFT) by the B3LYP method with a variety of basis sets. The predicted conformational stabilities from the MP2 calculations with relatively large basis sets are consistent with the experimental results. Structural parameters are estimated from the MP2(full)/6-311+G(d,p) predictions which are compared to the previously reported electron diffraction parameters. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

13.
Variable temperature (-55 to -100 degrees C) studies of the infrared spectra (4000-400 cm(-1)) of cyclobutanol, c-C4H7OH dissolved in liquid xenon have been carried out. The infrared spectrum (4000-100 cm(-1)) of the gas has also been recorded. From these data two of the four possible stable conformers have been confidently identified and their order of stabilities has been experimentally determined where the first indicator is for the position of attachment of the hydroxyl group on the bent cyclobutyl ring (Eq=equatorial or Ax=axial) and the second one (t=trans, g=gauche) is the relative position of the hydroxyl rotor, i.e. rotation around the ring C-O bond. The enthalpy difference between the most stable Eq-t conformer and the second most stable rotamer, Eq-g, has been determined to be 200+/-50 cm(-1) (2.39+/-0.60 kJ/mol). This experimentally determined order is consistent with the order of stability predicted by ab initio calculations Eq-t>Eq-g>Ax-g>Ax-t. Evidence was obtained for the third conformer Ax-g which is predicted by ab initio calculations to be less stable by more than 650cm(-1) than the Eq-t form. The percentage of each conformer at ambient temperature is estimated to be Eq-t (50%), Eq-g (47%) and Ax-g (3%). The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for all of the conformers from MP2(full)/6-31G(d) ab initio calculations. The optimized geometries and conformational stabilities have been obtained from ab initio calculations utilizing several different basis sets up to MP2(full)/aug-cc-pVTZ and from density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants for the Eq-t conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained. The determined heavy atom structural parameters for the Eq-t conformer are: the distances C1-C4=1.547(5) angstroms, C4-C6=1.552(5)angstroms, C-O=1.416(5) angstroms and angles angleC6C4C1=86.6(5) degrees , angleC4C1C5=88.9(5) degrees and angleC6C5C1C4=22.8(5) degrees . The results are discussed and compared to the corresponding properties of some similar molecules.  相似文献   

14.
Laser-ablated lanthanide metal atoms were condensed with CH(2)F(2) in excess argon at 6 K or neon at 4 K. New infrared absorption bands are assigned to the oxidative addition product methylene lanthanide difluorides on the basis of deuterium substitution and vibrational frequency calculations with density functional theory (DFT). Two dominant absorptions in the 500 cm(-1) region are identified as lanthanide-fluoride stretching modes for this very strong infrared absorption. The predominantly lanthanide-carbon stretching modes follow a similar trend of increasing with metal size and have characteristic 30 cm(-1) deuterium and 14 cm(-1) (13)C isotopic shifts. The electronic structure calculations show that these CH(2)LnF(2) complexes are not analogous to the simple transition and actinide metal methylidenes with metal-carbon double bonds that have been investigated previously, because the lanthanide metals (in the +2 or +3 oxidation state) do not appear to form a π-type bond with the CH(2) group. The DFT and ab initio correlated molecular orbital theory calculations predict that these complexes exist as multiradicals, with a Ln-C σ bond and a single electron on C-2p weakly coupled with f(x) (x = 1 (Ce), 2 (Pr), 3(Nd), etc.) electrons in the adjacent Ln-4f orbitals. The Ln-C σ bond is composed of about 15% Ln-5d,6s and 85% C-sp(2) hybrid orbital. The Ln orbital has predominantly 6s and 5d character with more d-character for early lanthanides and increasing amounts of s-character across the row. The Ln-F bonds are almost purely ionic. Accordingly, the argon-neon matrix shifts are large (13-16 cm(-1)) for the ionic Ln-F bond stretching modes and small (~1 cm(-1)) for the more covalent Ln-C bond stretching modes.  相似文献   

15.
The infrared spectra (3500-50 cm(-1)) of the gas and solid and the Raman spectra (3500-50 cm(-1)) of the liquid and solid have been recorded for 1-fluoro-2-butyne, CH3-C-triple bond-C-CH2F. Equilibrium geometries and energies have been determined by ab initio and hybrid DFT methods using a number of basis sets. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on vibrational-rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of Coriolis sub-band structure in two of the degenerate methyl vibrations. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

16.
The Raman spectra (3200-30 cm(-1)) of liquid and solid, and infrared spectra of gaseous and solid chloromethyl silyl dichloride, ClCH2SiHCl2, have been recorded. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference was determined to be 363 +/- 40 cm(-1) (4.34 +/- 0.48 kJ mol(-1)), with the more stable form being the gauche conformer, which is consistent with the prediction from ab initio calculations at both the Hartree-Fock level and with full electron correlation by the perturbation method to second order. It is estimated that 92% of the sample is in the gauche form at ambient temperature. A complete vibrational assignment is proposed for the gauche conformer and several of fundamentals of the trans conformer based on infrared band contours, relative intensities, depolarization values, and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from the ab initio MP2/6-31G(d) calculations. The r0 SiH bond distances of 1.476 and 1.472 A have been obtained for the trans and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. The optimized geometries have also been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method up to MP2/6-311 + G(2d,2p). The results are discussed and compared to some corresponding results for several related molecules.  相似文献   

17.
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules.  相似文献   

18.
Variable temperature (-55--100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylphosphine-borane, CH3CH2PH2BH3, and ethylphosphine-borane-d5 dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 86 +/- 8 cm(-1) (1.03 +/- 0.10 kJ/mol), with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules. The r0 structural parameters have been obtained from a combination of the previously reported microwave rotational constants and ab initio predicted parameters.  相似文献   

19.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded complex of phenol with four water molecules PhOH...(H2O)4 (structure 4A) have been predicted using ab initio and DFT (B3LYP) calculations with 6-31G(d,p) basis set. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and B3LYP calculations show that the observed four intense bands at 3299, 3341, 3386 and 3430 cm(-1) can be assigned to the hydrogen-bonded OH stretching vibrations in the complex PhOH...(H2O)4 (4A). The complexation leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The predicted red shifts for these vibrations with B3LYP/6-31G(d,p) calculations are in very good agreement with the experimentally observed. It was established that the phenolic OH stretching vibration is the most sensitive to the hydrogen bonding. The predicted red-shift with the B3LYP/6-31G(d,p) calculations for the most stable ring structure 4A (-590 cm(-1)) is in better agreement with the experimentally observed than the red-shift, predicted with SCF/6-31G(d,p) calculations. The magnitude of the wavenumber shift is indicative of relatively strong OH...H hydrogen-bonded interaction. The complexation between phenol and four water molecules leads to strong increase of the IR intensity of the phenolic OH stretching vibration (up to 38 times).  相似文献   

20.
Variable temperature (-55 to -100°C) studies of the infrared spectra (3500-400 cm(-1)) of fluorocyclobutane, c-C(4)H(7)F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496±40 cm(-1) (5.93±0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8±1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732±47 cm(-1) (9.04±0.44 kJ/mol) and the average value of 602±20 cm(-1) from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (?) C-F=1.383(3) [1.407(3)], C(α)-C(β)=1.543(3) [1.546(3)], C(β)-C(γ)=1.554(3) [1.554(3)] and angles (°) ∠C(α)C(β)C(γ)=85.0(5) [89.2(5)], ∠C(β)C(α)C(β)=89.3(5) [89.2(5)], ∠F-(C(β)C(α)C(β))=117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号