首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.  相似文献   

2.
The mode selectivity of the H+CH3D→H2+CH2D reaction was studied using a recently developed ten-dimensional time-dependent wave packet method.The reac-tion dynam...  相似文献   

3.
A new full-dimensional potential energy surface for the title reaction has been constructed using the modified Shepard interpolation scheme. Energies and derivatives were calculated using the UCCSD(T) method with aug-cc-pVTZ and 6-311++G(3df,2pd) basis sets, respectively. A total number of 30,000 data points were selected from a huge number of molecular configurations sampled by trajectory method. Quantum dynamical calculations showed that the potential energy surface is well converged for the number of data points for collision energy up to 2.5 eV. Total reaction probabilities and integral cross sections were calculated on the present surface, as well as on the ZBB3 and EG-2008 surfaces for the title reaction. Satisfactory agreements were achieved between the present and the ZBB3 potential energy surfaces, indicating we are approaching the final stage to obtain a global potential energy surface of quantitative accuracy for this benchmark polyatomic system. Our calculations also showed that the EG-2008 surface is less accurate than the present and ZBB3 surfaces, particularly in high energy region.  相似文献   

4.
In a recent paper, we have developed an efficient implementation of the ring polymer molecular dynamics (RPMD) method for calculating bimolecular chemical reaction rates in the gas phase, and illustrated it with applications to some benchmark atom-diatom reactions. In this paper, we show that the same methodology can readily be used to treat more complex polyatomic reactions in their full dimensionality, such as the hydrogen abstraction reaction from methane, H + CH(4) → H(2) + CH(3). The present calculations were carried out using a modified and recalibrated version of the Jordan-Gilbert potential energy surface. The thermal rate coefficients obtained between 200 and 2000 K are presented and compared with previous results for the same potential energy surface. Throughout the temperature range that is available for comparison, the RPMD approximation gives better agreement with accurate quantum mechanical (multiconfigurational time-dependent Hartree) calculations than do either the centroid density version of quantum transition state theory (QTST) or the quantum instanton (QI) model. The RPMD rate coefficients are within a factor of 2 of the exact quantum mechanical rate coefficients at temperatures in the deep tunneling regime. These results indicate that our previous assessment of the accuracy of the RPMD approximation for atom-diatom reactions remains valid for more complex polyatomic reactions. They also suggest that the sensitivity of the QTST and QI rate coefficients to the choice of the transition state dividing surface becomes more of an issue as the dimensionality of the reaction increases.  相似文献   

5.
H+CH3NO2H2+CH2NO2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用MP2(FULL)/6-311G**从头算方法, 优化了H+CH3NO2H2+ CH2NO2反应的过渡态结构, 得出该反应的正逆反应的活化位垒分别是82.73和57.14 kJ*mol-1. 沿IRC分析指出该反应是一个H-H键生成和C-H键断裂的协同反应, 而且在反应途径上存在一个引导反应进行的振动模式, 这一反应模式引导反应进行的区间在-0.7~0.2( amu)1/2*a0之间; 在1 000~1 400 K温度范围内, 运用变分过渡态理论(CVT), 计算了该反应的速率常数, 计算结果与实验相一致.  相似文献   

6.
We report a high-quality, ab initio, full-dimensional global potential energy surface (PES) for the Cl((2)P, (2)P(3/2)) + CH(4) reaction, which describes both the abstraction (HCl + CH(3)) and substitution (H + CH(3)Cl) channels. The analytical PES is a least-squares fit, using a basis of permutationally invariant polynomials, to roughly 16,000 ab initio energy points, obtained by an efficient composite method, including counterpoise and spin-orbit corrections for the entrance channel. This composite method is shown to provide accuracy almost equal to all-electron CCSD(T)/aug-cc-pCVQZ results, but at much lower computational cost. Details of the PES, as well as additional high-level benchmark characterization of structures and energetics are reported. The PES has classical barrier heights of 2650 and 15,060 cm(-1) (relative to Cl((2)P(3/2)) + CH(4)(eq)), respectively, for the abstraction and substitution reactions, in good agreement with the corresponding new computed benchmark values, 2670 and 14,720 cm(-1). The PES also accurately describes the potential wells in the entrance and exit channels for the abstraction reaction. Quasiclassical trajectory calculations using the PES show that (a) the inclusion of the spin-orbit corrections in the PES decreases the cross sections by a factor of 1.5-2.5 at low collision energies (E(coll)); (b) at E(coll) ≈ 13,000 cm(-1) the substitution channel opens and the H/HCl ratio increases rapidly with E(coll); (c) the maximum impact parameter (b(max)) for the abstraction reaction is ~6 bohr; whereas b(max) is only ~2 bohr for the substitution; (d) the HCl and CH(3) products are mainly in the vibrational ground state even at very high E(coll); and (e) the HCl rotational distributions are cold, in excellent agreement with experiment at E(coll) = 1280 cm(-1).  相似文献   

7.
8.
Metastable ion decompositions, collision-activated dissociation (CAD), and neutralization-reionization mass spectrometry are utilized to study the unimolecular chemistry of distonic ion ·CH2CH2CH?OH (2) and its enol-keto tautomers CH3CH=CHOH (1 ) and CH3CH2CH=O (3). The major fragmentation of metastable 1–3 is H· loss to yield the propanoyl cation, CH3CH2C≡O+. This reaction remains dominant upon collisional activation, although now some isomeric CH2=CH-CH+ OH is coproduced from all three precursors. The CAD and neutralization-reionization (+NR+) spectra of keto ion 3 are substantially different from those of tautomers 2 and 1. Hence, 3 without sufficient energy for decomposition (i. e. , “stable” 3) does not isomerize to the ther-modynamically more stable ions 2 or 1, and the 1,4-H rearrangement H-CH2CH2CH=O(3 ) → CH2CH2CH+ O-H (2 ) must require an appreciable critical energy. Although the fragment ion abundances in the + NR + (and CAD) spectra of 1 and 2 are similar, the relative and absolute intensities of the survivor ions (recovered C3H6O ions in the +NR+ spectra) are markedly distinct and independent of the internal energy of 1 and 2 . Furthermore, 1 and 2 show different MI spectra. Based on these data, distonic ion 2 does not spontaneously rearrange to enol ion 1 (which is the most stable C3H6O of CCCO connectivity) and, therefore, is separated from it by an appreciable barrier. In contrast, the molecular ions of cyclopropanol (4 ) and allyl alcohol (5 ) isomerize readily to 2 , via ring opening and 1,2-H? shift, respectively. The sample found to generate the purest 2 is α-hydroxy-γ-butyrolactone. Several other precursors that would yield 2 by a least-motion reaction cogenerate detectable quantities of enol ion 1 , or the enol ion of acetone (CH2=C(CH3)OH, 6 ), or methyl vinyl ether ion (CH3OCH=CH 2 , 7 ). Ion 6 is coproduced from samples that contain the —CH2—CH(OH)—CH2— substructure, whereas 7 is coproduced from compounds with methoxy substituents. Compared to CAD, metastable ion characteristics combined with neutralization-reionization allow for a superior differentiation of the ions studied.  相似文献   

9.
H2,CO,CH4多元爆炸性混合气体支链爆炸阻尼效应   总被引:8,自引:0,他引:8  
对多元爆炸性混合气体爆炸的阻尼效应,进行了比较系统的研究,实验表明:“惰性气体”N2,CO2与水蒸汽对多元混合气体支链爆炸具有一定的抑制作用;甲烷与石油液化气对含H2易爆混合气体支链爆炸具有明显的阻尼效应.这对指导支链燃烧与支链爆炸的实践,关于工业尾气与废气的安全回收,有关爆炸性混合气体的置换技术的改进,以及工业与矿井混合气体爆炸事故的预防,具有重要的现实意义与理论价值.  相似文献   

10.
用变分过渡态理论对CH3SiH3与H的抽提反应进行了理论研究;利用从头算计算了反应体系的构型、振动频率和能量等信息;计算了温度在298 ~1700K内反应的速率常数和穿透系数。结果表明,在室温下,变分对于此反应影响较大,隧道效应特别明显,计算得到的速率常数和实验值符合得很好。  相似文献   

11.
The mechanism and kinetics of energy transfer from Xe(6s[3/2]1) resonance state (E=8.44 eV) to selected hydrocarbon molecules have been investigated by XeCl(B–X) (λmax=308 nm) fluorescence intensity measurements at stationary conditions in Xe–CCl4–M systems. Steady-state analysis of the fluorescence intensity dependence on the xenon and M pressure at constant CCl4 concentration shows that these process occur in the two- and three-body reactions: Xe(6s[3/2]10)+M→products, Xe(6s[3/2]10+M+Xe→products. The two- and three-body rate constants for these reactions have been found (see Table 1Table 1. Experimental parameters of Eq. (8)found by least square method in Xe–CCl4–C2H2 and Xe–CCl4–C2H4 systems for chosen xenon pressures in the range 25–150 Torr. Linear correlation coefficients (R) are also shown  相似文献   

12.
无机-有机杂化钒氧酸盐由于其结构的多样性以及在催化、医药、光、电、磁等材料领域中的应用前景而受到人们的广泛关注。近年来这一研究领域的重大进步是将有机氮配体或者过渡金属配合物直接连接到矾氧骨架上以获得各种新奇结构。合成出许多属于L/V/O、MXLY/V/O、L/P/V/O和MXLY  相似文献   

13.
Rate coefficients for the CH(v = 0,1) + D(2) reaction have been determined for all possible channels (T: 200-1200 K), using the quasiclassical trajectory method and a suitable treatment of the zero point energy. Calculations have also been performed on the CH(v = 1) + H(2) reaction and the CH(v = 1) + D(2) → CH(v = 0) + D(2) process. Most of the results can be understood considering the key role played by the deep minimum of the potential energy surface (PES), the barrierless character of the PES, the energy of the reaction channels, and the kinematics. The good agreement found between theory and experiment for the rate coefficients of the capture process of CH(v = 0) + D(2), the total reactivity of CH(v = 1) + D(2), H(2), as well as the good agreement observed for the related CH(v = 0) + H(2) system (capture and abstraction), gives confidence on the theoretical rate coefficients obtained for the capture processes of CH(v = 1) + D(2), H(2), the individual reactive processes of CH(v = 1) + D(2), H(2), the abstraction and abstraction-exchange reactions for CH(v = 0) + D(2), and the inelastic process mentioned above, for which there are no experimental data available, and that can be useful in combustion chemistry and astrochemistry.  相似文献   

14.
《Chemical physics letters》1986,123(4):331-336
The potential energy surface for the CH4+CH4+ reaction system has been calculated with the ab initio method. A stable complex, responsible for the complex mechanism, has been found but is hard to reach. Each of the two direct mechanisms, hydrogen transfer and proton transfer, has been shown to consist of a combination of electron transfer and hydrogen atom transfer processes.  相似文献   

15.
The dissociation/recombination reaction CH(4) (+M) ? CH(3) + H (+M) is modeled by statistical unimolecular rate theory completely based on dynamical information using ab initio potentials. The results are compared with experimental data. Minor discrepancies are removed by fine-tuning theoretical energy transfer data. The treatment accounts for transitional mode dynamics, adequate centrifugal barriers, anharmonicity of vibrational densities of states, weak collision and other effects, thus being "complete" from a theoretical point of view. Equilibrium constants between 300 and 5000 K are expressed as K(c) = k(rec)/k(dis) = exp(52,044 K/T) [10(-24.65) (T/300 K)(-1.76) + 10(-26.38) (T/300 K)(0.67)] cm(3) molecule(-1), high pressure recombination rate constants between 130 and 3000 K as k(rec,∞) = 3.34 × 10(-10) (T/300 K)(0.186) exp(-T/25,200 K) cm(3) molecule(-1) s(-1). Low pressure recombination rate constants for M = Ar are represented by k(rec,0) = [Ar] 10(-26.19) exp[-(T/21.22 K)(0.5)] cm(6) molecule(-2) s(-1), for M = N(2) by k(rec,0) = [N(2)] 10(-26.04) exp[-(T/21.91 K)(0.5)] cm(6) molecule(-2) s(-1) between 100 and 5000 K. Weak collision falloff curves are approximated by asymmetric broadening factors [J. Troe and V. G. Ushakov, J. Chem. Phys. 135, 054304 (2011)] with center broadening factors of F(c) ≈ 0.262 + [(T - 2950 K)/6100 K](2) for M = Ar. Expressions for other bath gases can also be obtained.  相似文献   

16.
Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.  相似文献   

17.
The abstract reaction of CH3SiH3 with H has been studied by using the“direct dynamics”method of variational transition-state theory,which is based on the information on geometries,frequencies and energies calculated by ab initio along the minimum energy path.The rate constants and transmission coefficients were calculated for the temperature range 298~1700K.The result indicates that the variational effect on this reaction is great and the tunneling effect is very obvious at room temperature.The rate constants calculated match well with the experimental value.  相似文献   

18.
《Chemical physics letters》2002,350(5-6):623-627
The ground states and binding energies of Eu3+–L (L=H2O,H2S,NH2CH3,S(CH3)2, imidazole) complexes has been determined using ab initio techniques. The binding is mostly electrostatic as expected. The empty f orbital is different for the S compounds, being a π-like orbital, while for the O and N containing ligands it is a σ-like orbital. However, the range in the binding energies for the different f holes is small.  相似文献   

19.
CH2O+H→CHO+H2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用QCISD/6-311G^** 从头算方法,优化了吸氢反应CH2O+H→CHO+H2的反应物、过渡态、产物几何结构,得出该反应的正、逆反应活化位垒分别是35.4kJ/mol和98.8kJ/mol。沿IRC分析指出该反应是一个C—H键断裂和H—H键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在—0.4~0.55(amu)^1/2之间。在300~3200K温度范围内,运用变分过渡态理论(CVT),计算了该反应的速率常数。  相似文献   

20.
The reaction for CH3CH2+N(4S) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single point calculations for all the stationary points were carried out at the QCISD(T)/ 6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2CH2+3NH and H2CN+CH3, and the minor products are the CH3CHN+H in the reaction. The majority of the products CH2CH2+3NH are formed via a direct hydrogen abstraction channel. The products H2CN+CH3 are produced via an addition/dissociation channel. The products CH3CHN+H are produced via an addition/dissociation channel.  相似文献   

P(Xe) (Torr)C2H4C2H2
Empty Cellab×1016 cm3/molec.Rab×1016 cm3/molec.R
250.923.260.981.002.780.95
400.863.290.971.002.910.98
500.873.330.970.993.050.98
600.853.330.971.022.990.98
750.863.390.971.032.950.98
900.923.300.971.032.850.98
1000.923.210.981.02.770.98
1100.883.190.961.022.710.99
1250.863.120.95
1400.922.900.95
1500.952.770.94
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号