首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of biomacromolecular therapeutics has revolutionized disease treatment, but frequent injections are required owing to their short half‐life in vivo. Thus there is a need for a drug delivery system that acts as a reservoir and releases the drug remotely “on demand”. Here we demonstrate a simple light‐triggered local drug delivery system through photo‐thermal interactions of polymer‐coated gold nanoparticles (AuNPs) inside an agarose hydrogel as therapeutic depot. Localized temperature increase induced by the visible light exposure caused reversible softening of the hydrogel matrix to release the pre‐loaded therapeutics. The release profile can be adjusted by AuNPs and agarose concentrations, light intensity and exposure time. Importantly, the biological activity of the released bevacizumab was highly retained. In this study we demonstrate the potential application of this facile AuNPs/hydrogel system for ocular therapeutics delivery through its versatility to release multiple biologics, compatibility to ocular cells and spatiotemporal control using visible light.  相似文献   

2.
Noncovalent self-assembled materials inspired by amyloid architectures are useful for biomedical applications ranging from regenerative medicine to drug delivery. The selective coassembly of complementary monomeric units to provide ordered multicomponent fibrils is a possible strategy for enhancing the sophistication of these noncovalent materials. Herein we report that complementary π-π interactions can be exploited to promote the coassembly of phenylalanine (Phe) derivatives that possess complementary aromatic side-chain functionality. Specifically, equimolar mixtures of Fmoc-Phe and Fmoc-F(5)-Phe, which possess side-chain groups with complementary quadrupole electronics, readily coassemble to form two-component fibrils and hydrogels under conditions where Fmoc-Phe alone fails to self-assemble. In addition, it was found that equimolar mixtures of Fmoc-Phe with monohalogenated (F, Cl, and Br) Fmoc-Phe derivatives also coassembled into two-component fibrils. These results collectively indicate that face-to-face quadrupole stacking between benzyl side-chain groups does not account for the molecular recognition between Phe and halogenated Phe derivatives that promote cofibrillization but that coassembly is mediated by more subtle π-π effects arising from the halogenation of the benzyl side chain. The use of complementary π-π interactions to promote the coassembly of two distinct monomeric units into ordered two-component fibrils dramatically expands the repertoire of noncovalent interactions that can be used in the development of sophisticated noncovalent materials.  相似文献   

3.
Dynamic materials have been widely studied for regulation of cell adhesion that is important to a variety of biological and biomedical applications. These materials can undergo changes mainly through one of the two mechanisms: ligand release in response to chemical, physical, or biological stimuli, and ligand burial in response to mechanical stretching or the change of electrical potential. This study demonstrates an encrypted ligand and a new hydrogel that are capable of inducing and inhibiting cell adhesion, which is controlled by molecular reconfiguration. The ligand initially exhibits an inert state; it can be reconfigured into active and inert states by using unblocking and recovering molecules in physiological conditions. Since molecular reconfiguration does not require the release of the ligand from the hydrogels, inhibiting and inducing cell adhesion on the hydrogels can be repeated for multiple cycles.  相似文献   

4.
In this work, graphene oxide (GO)‐loaded agarose hydrogel was transferred into oil such as hexadecane via stepwise solvent exchange with no chemical modification of the GO hydrophilic surface and the agarose network. After transfer, the GOs, loaded in the agarose network, could effectively and efficiently adsorb lipophilic dyes in oil via hydrogen bonding between the polar groups of the GOs and the dyes. The maximum adsorption capacity was 355.9 mg g?1 for Nile red for instance, which is substantially larger than that of pristine agarose hydrogel and hydrophilic GO powder. The dye concentration for effective adsorption can be as low as 0.5 ppm. Thus, the present work demonstrates the promising potential of using hydrophilic adsorbents for efficient removal of polar impurities from oil.  相似文献   

5.
This study is concerned with the preparation of novel composite systems in which the hydrogel of crosslinked poly(acrylic acid) is a matrix and polypyrrole is an electroconducting component. The effects of synthesis conditions on the structure of the composite systems, their ability to swell in water, and mechanical characteristics are studied. The proposed synthesis procedure allows production of a bulk electroconducting phase of polypyrrole in the hydrogel matrix. The effect of crosslink density of hydrogel on the character of polypyrrole distribution in the matrix is studied. The above composites combine the electrical characteristics of polypyrrole with high elasticity and the ability to repeatedly swell the crosslinked poly(acrylic acid).  相似文献   

6.
Combining hydrogels sensitive to external stimuli with conducting surfaces opens new possibilities in electrochemistry. Thin hydrogel layers as unique electrode-modifying materials provide highly permeable matrix for easy diffusion of analytes. In addition, larger individuals, for example, nanoparticles and enzymes, can be straightforwardly immobilized in the polymeric networks at electrode surfaces. Such properties are strongly desired for construction of sensors and biosensors. In addition, sensitivity to external stimuli allows to significantly enhance or weaken the electroanalytical signal. Recently, a significant number of articles concerning switchable sensors/biosensors, switchable electrochemical systems and signal–responsive interfaces have been published. This report is also focused on the construction of various devices based on electrode surfaces modified with smart hydrogel layers, for example, logic gates and electroresponsive hydrogel layers as potentially advanced drug delivery systems, artificial muscles and electrochemical valves.  相似文献   

7.
Composite hydrogels—macroscopic hydrogels with embedded microgel particles—are expected to respond to external stimuli quickly because microgels swell much faster than bulky gels. In this work, the kinetics of the pH‐induced swelling of a composite hydrogel are studied using turbidity measurements. The embedded microgel is a pH‐ and thermosensitive poly(N‐isopropylacrylamide‐co‐acrylic acid) microgel and the hydrogel matrix is polyacrylamide. A rapid pH‐induced swelling of the embedded microgel particles is observed, confirming that composite hydrogels respond faster than ordinary hydrogels. However, compared with the free microgels, the swelling of the embedded microgel is much slower. Diffusion of OH? into the composite hydrogel film is identified as the main reason for the slow swelling of the embedded microgel particles, as the time of the pH‐induced swelling of this film is comparable to that of OH? diffusion into the film. The composition of the hydrogel matrix does not significantly change the characteristic swelling time of the composite hydrogel film. However, the swelling pattern of the film changes with composition of the hydrogel matrix.  相似文献   

8.
This paper describes the control of the nucleation and growth of calcite crystals by a matrix composed of an agarose hydrogel on top of a carboxylate-terminated self-assembled monolayer (SAM). The design of this matrix is based upon examples from biomineralization in which hydrogels are coupled with functionalized, organic surfaces to control, simultaneously, crystal morphology and orientation. In the synthetic system, calcite crystals nucleate from the (012) plane (the same plane that is observed in solution growth). The aspect ratio (length/width) of the crystals decreases from 2.1 +/- 0.22 in solution to 1.2 +/- 0.04 in a 3 w/v % agarose gel. One possible explanation for the change in morphology is the incorporation of gel fibers inside of the crystals during the growth process. Etching of the gel-grown crystals with deionized water reveals an interpenetrating network of gel fibers and crystalline material. This work begins to provide insight into why organisms use hydrogels to control the growth of crystals.  相似文献   

9.
The intelligent controlled drug delivery systems (DDS) are a series of the preparations including microcapsules or nanocapsules composed of intelligent polymers and medication. The properties of preparations can change with the external stimuli, such as pH value, temperature,chemical substance, light, electricity and magnetism etc. According to this properties, the DDS can be intelligently controlled. This paper has reviemed research on syntheses and applications of intelligent controlled DDS of polymer carriers.Drug delivery system with pH stimuliThe volume of polymer hydrogel can change with the pH value of external environment. The sensitive polymer hydrogels to pH are often as carriers. The polymer hydrogel carrying medicine is especially suitable for taking orally. In order to protect medicine from losing activation, we enwrapped medicine into polymer hydrogel with acidic group. In the acidic environment of stomach,the volume of polymer hydrogel contracts because of the hydrogen bond. The medicine in the polymer hydrogel cannot disperse out. When it goes to the intestine of basic environment, the hydrogen bond will be broken, and the medicine can release.Drug delivery system with temperatureTemperature sensitive polymer hydrogel can change its volume with changing of environmental temperature. This kind of polymer hydrogel can be also used as a carrier of medicine. At a low temperature, the polymer chains form hydrogen bond with water to swell to let medicine disperse out from the hydrogel. On the other hand, the hydrogen bond will be broken and polymer chain will lose water to contract with temperature's increasing. And the medicine will not disperse out. For example,the poly(N-isopropylacrylamide)(PNIPAAm) is the hydrogel that is swelled at lower temperature and contracted at higher temperature. PNIPAAm has the lower critical solution temperature(LCST).We can adjust its LCST to control PNIPAAm hydrogel's swelling or contraction to let medicine release or not.Drug delivery system with other stimuliThe polymer carrier drug delivery system can be intelligently controlled with the stimuli of pH value and temperature. In addition, there are still some other stimuli for DDS. For example, DDS with light; DDS with electricity(or electric field); DDS with magnetism(magnetic field); DDS with chemical substance; etc. The characteristic of intelligent polymer carrier is based on P.J.Flory's gel-swelling theory. Intelligent polymer carrier DDS will be widely used in biological and medical fields.  相似文献   

10.
Supramolecular hydrogels constructed through molecular self‐assembly of small molecules have unique stimuli‐responsive properties; however, they are mechanically weak in general, relative to conventional polymer gels. Very recently, we developed a zwitterionic amino acid tethered amphiphilic molecule 1 , which gave rise to a remarkably stiff hydrogel comparable with polymer‐based agarose gel, retaining reversible thermal‐responsive properties. In this study, we describe that rational accumulation of multiple and orthogonal noncovalent interactions in the supramolecular nanofibers of 1 played crucial roles not only in the mechanical reinforcement but also in the multistimuli responsiveness. That is, the zwitterionic amino acid moiety and the C C double bond unit of the hydrogelator 1 can function as a pH‐responsive unit and a light‐responsive unit, respectively. We also demonstrated that this stiff and multistimuli‐responsive supramolecular hydrogel 1 is applied as a unique mold for 2D and 3D‐patterning of various substances. More significantly, we succeeded in the fabrication of a collagen gel for spatial patterning, culturing, and differentiation of live cells by using hydrogel 1 molds equipped with 2D/3D microspace channels (100–200 μm in diameter).  相似文献   

11.
The flourishing development in flexible electronics has provoked intensive research in flexible strain sensors to realize accurate perception acquisition under different external stimuli.However,building hydrogel-based strain sensors with high stretchability and sensitivity remains a great challenge.Herein,MXene nanosheets were composited into polyacrylamide-sodium alginate matrix to construct mechanical robust and sensitive double networked hydrogel strain sensor.The hydrophilic MXene nanosheets formed strong interactions with the polymer matrix and endowed the hydrogel with excellent tensile properties(3150%),compliant mechanical strength(2.03 kPa~(-1) in Young's Module) and long-lasting stability and fatigue resistance(1000 dynamic cycles under 1,600% strain).Due to the highly oriented MXene-based three dimensional conductive networks,the hydrogel sensor achieved extremely high tensile sensitivity(18.15 in gauge factor) and compression sensitivity(0.38 kPa~(-1) below 3 kPa).MXene hydrogel-based strain sensors also displayed negligible hysteresis in electromechanical performance,typical frequent-independent feature and rapid response time to external stimuli.Moreover,the sensor exhibited accurate response to different scales of human movements,providing potential application in speech recognition,expression recognition and handwriting verification.  相似文献   

12.
A hydrogel‐based microchamber with organic electrodes for efficient electrical stimulations of human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) is described. The microchamber is made from molecularly permeable, optically transparent, and electrically conductive polyvinyl alcohol (PVA) hydrogel and highly capacitive carbon electrode modified with poly(3,4‐ethylenedioxythiophene) (PEDOT). Spheroids of hiPSC‐CMs are cultured in microchambers, and electrically stimulated by the electrode for maturation. The large interfacial capacitance of the electrodes enables several days of electrical stimulation without generation of cytotoxic bubbles even when the electrodes are placed near the spheroids. The spheroids can be cultivated in the closed microchambers because of the permeated nutrients through the hydrogel, thus the spheroids are stably addressable and the culture medium around the sealed microchambers can be simply exchanged. Synchronized beating of the spheroids can be optically analyzed in situ, which makes it possible to selectively collect electrically responsive cells for further use. As the hydrogel is electrically conductive, the amount of electrical charge needed for maturing the spheroids can be reduced by configuring electrodes on the top and the bottom of the microchamber. The bioreactor will be useful for efficient production of matured hiPSC‐CMs for regenerative medicine and drug screening.  相似文献   

13.
We demonstrate that cytoskeletal actin-myosin networks can be encapsulated with high efficiency in giant liposomes by hydration of lipids in an agarose hydrogel. The liposomes have cell-sized diameters of 10-20 μm and a uniform actin content. We show by measurements of membrane fluorescence intensity and bending rigidity that the majority of liposomes are unilamellar. We further demonstrate that the actin network can be specifically anchored to the membrane by biotin-streptavidin linkages. These protein-filled liposomes are useful model systems for quantitative studies of the physical mechanisms by which the cytoskeleton actively controls cell shape and mechanics. In a broader context, this new preparation method should be widely applicable to encapsulation of proteins and polymers, for instance, to create polymer-reinforced liposomes for drug delivery.  相似文献   

14.
Catalysis-based approaches for the activation of anticancer agents hold considerable promise. These principally rely on the use of metal catalysts capable of deprotecting inactive precursors of organic drugs or transforming key biomolecules available in the cellular environment. Nevertheless, the efficiency of most of the schemes described so far is rather low, limiting the benefits of catalytic amplification as strategy for controlling the therapeutic effects of anticancer compounds. In the work presented here, we show that flavin reactivity within a hydrogel matrix provides a viable solution for the efficient catalytic activation and delivery of cisplatin, a worldwide clinically-approved inorganic chemotherapy agent. This is achieved by ionically adsorbing a flavin catalyst and a Pt(iv) prodrug as substrate into porous amino-functionalized agarose beads. The hydrogel chassis supplies high local concentrations of electron donating groups/molecules in the surrounding of the catalyst, ultimately boosting substrate conversion rates (TOF >200 min−1) and enabling controlled liberation of the drug by light or chemical stimuli. Overall, this approach can afford platforms for the efficient delivery of platinum drugs as demonstrated herein by using a transdermal diffusion model simulating the human skin.

Loading of a flavin catalyst and Pt prodrug onto a hydrogel affords biomaterials for the catalytic generation and delivery of cisplatin upon light irradiation or addition of electron donors. Confinement boosts the turnover frequency of the flavin.  相似文献   

15.
The properties of polyvinyl alcohol (PVA) nanocomposite hydrogels influenced by nanoparticles are reviewed. Various kinds of nanoparticles with excellent mechanical and electrical properties have been introduced into PVA hydrogel to produce stretchable and conductive PVA nanocomposite hydrogel. Understanding the mechanism between the matrix of PVA hydrogel and nanoparticles is therefore critical for the development of PVA nanocomposite hydrogels. This review focuses on the nanoparticles include carbon nanotubes, graphene oxide and metal nanoparticles, and describes the effects of nanoparticles on the mechanical and conductive properties of PVA nanocomposite hydrogels. A new promising area of soft stretchable PVA nanocomposite hydrogel is highlighted for possible applications. Finally, a brief outlook for future research is presented.  相似文献   

16.
用琼脂糖将肌红蛋白(Mb)固定到玻碳电极(GC)表面,制备了Mb-琼脂糖膜修饰电极。包埋在琼脂糖膜中的Mb在缓冲溶液和乙醇混合溶液中与电极直接传递电子,得到一对对称的Mb辅基血红素Fe(III)/Fe(II)电对的可逆氧化还原峰。其式电势随缓冲溶液pH值增加而负移,且呈线性关系,这说明Mb的电子传递过程伴随有质子的转移。在缓冲溶液和乙醇混合溶液中,固定化肌红蛋白表现出类似细胞色素P450的催化活性,能快速催化还原氯乙烷(六氯乙烷、五氯乙烷、四氯乙烷)脱氯,Mb-琼脂糖膜修饰电极具有较好的稳定性和重现性,可用于这些物质的定量检测。  相似文献   

17.
Micropatch‐arrayed pads (MAPAs) are presented as a facile and sensitive sampling method for spatial profiling of topical agents adsorbed on the surface of skin. MAPAs are 28 × 28 mm sized pieces of polytetrafluoroethylene containing plurality of cavities filled with agarose hydrogel. They are affixed onto skin for 10 min with the purpose to collect drugs applied topically. Polar compounds are absorbed by the hydrogel micropatches. The probes are subsequently scanned by an automated nanospray desorption electrospray ionization mass spectrometry system operated in the tapping dual‐polarity mode. When the liquid junction gets into contact with every micropatch, polar compounds absorbed in the hydrogel matrix are desorbed and transferred to the ion source. A 3D‐printed interface prevents evaporation of hydrogel micropatches assuring good reproducibility and sensitivity. MAPAs have been applied to follow dispersion of topical drugs applied to human skin in vivo and to porcine skin ex vivo, in the form of self‐adhesive patches. Spatiotemporal characteristics of the drug dispersion process have been revealed using this non‐invasive test. Differences between drug dispersion in vivo and ex vivo could be observed. We envision that MAPAs can be used to investigate spatiotemporal kinetics of various topical agents utilized in medical treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.  相似文献   

19.
Microelectronic devices employ electrons for signaling whereas the nervous system signals using ions and chemicals. Bridging these signaling differences would benefit applications that range from biosensing to neuroprosthetics. Here, we report the use of localized electrical signals to perform an operation common to chemical signaling in the nervous system. Specifically, we employ electrical signals to restrain vesicles reversibly. We perform this operation using the stimuli-responsive aminopolysaccharide chitosan that is able to electrodeposit onto cathode surfaces in response to localized electrical stimuli. We show that surfactant-vesicles and liposomes can be co-deposited with chitosan and are entrapped (i.e., restrained) within the deposited film's matrix. Vesicle co-deposition could be controlled spatially and temporally using microfabricated wafers with independent electrode addresses. Finally, we show that vesicles restrained within the deposited chitosan matrix can be mobilized under mildly acidic conditions (pH <6.5) that resolubilize chitosan. Potentially, the ability to restrain and mobilize chemical signals that are segregated within vesicles may allow microfluidic systems to access the rich diversity offered by chemical signaling.  相似文献   

20.
The performance of nanoporous hydrogel microplugs with varying surface charge density is described in concentrating charged analytes electrokinetically in a microfluidic device. A neutral hydrogel plug with a mean pore size smaller than the size of charged analytes acts as a simple size-exclusion membrane. The presence of fixed charges on the backbone of a nanoporous hydrogel creates ion-permselectivity which results in charge-selective transport through the hydrogel. This leads to the development of concentration polarization (CP) in the adjoining bulk electrolyte solutions under the influence of an applied electrical field. CP strongly affects the distribution of the local electrical field strength, in particular, in the vicinity of the hydrogel plug which can significantly reduce the concentration enrichment factors compared to the neutral hydrogel. A theoretical model and simulations are presented, together with experimental data, to explain the interplay of hydrogel or membrane cation-selectivity, electrical field-induced CP, and the distribution of the local electrical field strength with respect to concentration enrichment of negatively charged analytes at the cathodic membrane-solution interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号