首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum-dot structures based on the CdTe, ZnTe, and CdSe semiconductors are prepared by molecular-beam epitaxy, colloid chemistry methods, and ball milling, and their Raman spectra are studied. Localized longitudinal phonons are observed in all spectra. The dependence of the localized phonon frequency on the thickness of the ZnTe barrier in CdTe/ZnTe quantum-dot superlattices is used to derive the dispersion relation for longitudinal phonons in ZnTe. The Raman spectra of ensembles of colloidal quantum dots differ from the spectra of the other objects by the absence of tellurium bands and a strong intensity of the longitudinal phonon band of CdTe. It is revealed that the spectra depend on the technology employed to prepare quantum-dot structures.  相似文献   

2.
This paper reports on the results of investigations of the lattice IR reflection spectra of ZnTe/CdTe multilayer superlattices with CdTe quantum dots grown by molecular-beam epitaxy on a GaAs substrate with a CdTe buffer layer. It is found that the lattice IR reflection spectra of the studied structures exhibit three intense bands associated with vibrational excitations in the GaAs substrate, ZnTe barriers separating the layers with CdTe quantum dots, and the CdTe buffer layer. An analysis of the reflection bands and shifts in the phonon frequencies has revealed internal elastic stresses both in the surface layer of the GaAs substrate and in the ZnTe barriers. It is established that elastic stresses undergo relaxation in the separating ZnTe layers with an increase in their thickness. An additional mode observed in the reflection spectra is explained by manifestations of ZnTe-like vibrations in the ZnCdTe alloy due to interdiffusion of Cd and Zn at the interfaces.  相似文献   

3.
The Raman spectra of superlattices consisting of layers of CdTe self-assembled quantum dots separated by ZnTe narrow barriers with thicknesses of 10 and 5 monolayers are investigated. It is found that, apart from the bands previously observed at frequencies of ~120 and ~140 cm?1 for samples with thicker barriers (25 and 12 monolayers), the Raman spectra exhibit a band at ~147 cm?1 in the frequency range of CdTe vibrational modes. This band is attributed to a symmetric vibrational mode of a pair of quantum dots with oppositely directed oscillations of the dipole moments. It is this type of vibrational mode in the material surrounding the ZnTe quantum dot that accounts for the shift of the band at ~200 cm?1 near the LO mode of ZnTe vibrations toward lower frequencies.  相似文献   

4.
The temperature dependence of the luminescence of CdTe/ZnTe quantum-dot superlattices (self-assembled quantum-dot multilayers) with ZnTe spacers of various thicknesses was studied. Luminescence quenching observed to occur with increasing temperature is shown to depend substantially on the thickness of the ZnTe spacer. Particular attention is focused on the temperature dependence of the luminescence of a structure with the smallest ZnTe layer thickness, containing clusters of regularly arranged quantum dots. The luminescence line of tunneling-coupled quantum dots appearing in this structure exhibits an unusual temperature dependence, more specifically, an anomalously large shift of the peak position and fast luminescence quenching with increasing temperature.  相似文献   

5.
《Current Applied Physics》2018,18(2):267-271
We report resonant Raman scattering results of CdTe/ZnTe self-assembled quantum dot (QD) structures. Photoluminescence spectra reveal that the band gap energies of the CdTe QDs decrease with the increase of CdTe thickness from 2.0 to 3.5 monolayers, which indicates that the size of the QDs increases. When the CdTe/ZnTe QD structures are excited by non-resonant excitation, a longitudinal optical (LO) phonon response from the ZnTe barrier material is observed at 206 cm−1. In contrast, when the CdTe/ZnTe QD structures are resonantly excited near the band gap energy of the QDs, additional phonon modes emerge at 167 and 200 cm−1, while the ZnTe LO phonon response completely disappears. The 167 cm−1 mode corresponds to the LO phonon of the CdTe QDs. A spatially resolved Raman scattering from the cleaved edge of the QD sample reveals that the 200 cm−1 mode is strongly localized at the interface between the CdTe QDs and ZnTe cap layer. This phonon mode is attributed to the interface optical (IO) phonon. The analytically calculated value of the IO phonon energy using a dielectric continuum approach, assuming a spherical dot boundary, agrees well with the experimental value.  相似文献   

6.
The IR reflection spectra of structures that consist of alternating layers of CdTe quantum dots and ZnTe barriers and are grown on ZnTe and CdTe/ZnTe buffer layers on GaAs(001) substrates are studied. The spectra are processed using dispersion analysis, and the parameters of the oscillators are determined. In the spectra, quantum dots manifest themselves in the form of a broad band at a frequency close to the frequency of the Fröhlich mode. It is revealed that the spectra contain features associated with the interdiffusion of the CdTe and ZnTe compounds, i.e., bands attributed to the local mode of Zn atoms in the CdTe compound and two gap modes of Cd atoms in the ZnTe compound.  相似文献   

7.
Studies of CdTe/ZnTe quantum-dot superlattices (self-assembled quantum-dot multilayers) have been carried out by optical spectroscopy methods in a wide range of temperatures. It has been shown that the ZnTe spacer layer thickness affects the properties of these quantum-dot superlattices due to changes in the elastic strain distribution pattern. An additional luminescence band appearing in the spectrum of the structure with the thinnest ZnTe spacer layer exhibits an anomalous shift of the peak position and an unusual behavior of integral intensity with the temperature increase. We assume that the spectrum of CdTe/ZnTe quantum-dot superlattices with the thinnest ZnTe spacer is caused by two kinds of excitonic states—spatially indirect and spatially direct.  相似文献   

8.
The influence of the thickness of ZnTe barrier layers on the cathodoluminescence spectra of strained CdTe/ZnTe superlattices containing layers of quantum dots with an average lateral size of approximately 3 nm has been investigated. In samples with thick barrier layers (30, 15 nm), the cathodoluminescence spectra of quantum dots exhibit one band with a maximum at E = 2.03 eV. It has been revealed that, at a barrier layer thickness of ∼3 nm, the luminescence band is split. However, at a ZnTe layer thickness of 1.5 nm, the luminescence spectrum also contains one band. The experimental results have been interpreted with allowance made for the influence of elastic biaxial strains on the energy states of light and heavy holes in the CdTe and ZnTe layers. For the CdTe/ZnTe heterostructure with quantum dots in which the thickness of the deposited CdTe layer is 1.5 monolayers and the thickness of the barrier layer is 100 monolayers, the cathodoluminescence spectrum contains 2LO-phonon replicas. This effect has been explained by the resonance between two-phonon LO states and the difference between the energy states in the electronic spectrum of wetting layer fragments.  相似文献   

9.
The lattice IR reflection spectra of a ZnTe/Zn0.8Cd0.2Te superlattice measured at temperatures of 300 and 10 K are analyzed. The ZnTe/Zn0.8Cd0.2Te superlattice is grown by molecular-beam epitaxy on a GaAs substrate with a ZnTe buffer layer. It is found that the lattice IR reflection spectra of the studied structure exhibit only one reflection band. Dispersion analysis of the experimental spectrum has revealed the presence of one lattice TO mode close in frequency to the mode of pure ZnTe. This result is explained by a shift in the frequency of the lattice modes of the ZnTe and Zn0.8Cd0.2Te layers of the superlattice toward each other. In turn, this shift is caused by internal elastic stresses in the superlattice due to a mismatch between the lattice parameters of the materials of these layers.  相似文献   

10.
The optical spectra of the CdTe/Cd0.7Mn0.3Te structure containing three CdTe quantum wells with nominal thicknesses of 16, 8, and 4 monolayers have been investigated. The temperature dependences of parameters of the exciton luminescence spectra (integrated intensity, full-width at half-maximum, position of the maximum, Stokes shift) for quantum wells with different thicknesses differ substantially. These differences are explained by a strong thickness dependence of the energy of Coulomb coupling in the exciton, the energy of localization of the exciton on bulges of the quantum well, and the degree of penetration of the exciton wave function into the barrier. At high excitation power densities, the emission contours of the quantum wells with thicknesses of 8 and 16 monolayers contain short-wavelength tails that correspond to optical transitions between excited quantum-well levels.  相似文献   

11.
Photoluminescence and Raman scattering spectra in CdTe/ZnTe heterostructures and superlattices with narrow quantum wells (4.8–9.2 Å) in a temperature range of 5–300 K have been measured. The temperature dependences of the intensity of exciton luminescence in isolated quantum wells have been studied, and the thermal activation energies associated with the effective barriers for electrons and holes have been determined. In CdTe/ZnTe heterostructures, the binding energies of an exciton with a heavy hole have been determined as functions of the quantum well width. The multiphonon Raman spectra that exhibit distinctive features, such as the weak intensity of nLO phonon lines of ZnTe (n < 8), the absence of their dependence on the number n (n > 2), and the multiple participation in scattering of acoustic LA phonons with large wave vector, have been investigated. The results have been explained based on the concept of the relaxation of hot excitons over the exciton band.  相似文献   

12.
Photoluminescence (PL) measurements were carried out to investigate the interband transition and the activation energy in CdTe/ZnTe double quantum dots (QDs). While the excitonic peaks corresponding to the interband transition from the ground electronic subband to the ground heavy-hole (E1-HH1) in the CdTe/ZnTe double QDs shifted to higher energy with decreasing ZnTe spacer thickness from 30 to 10 nm due to transformation from CdTe QDs to CdxZn1−xTe QDs, the peaks of the (E1-HH1) transitions shifted to lower energy with decreasing spacer thickness from 10 to 3 nm due to the tunneling effects of the electrons between CdTe double QDs. The decrease in the activation energy with decreasing ZnTe spacer thickness might originate from an increase in the number of defects in the ZnTe spacer. The present results can help improve the understanding of the interband transition and the activation energy in CdTe/ZnTe double QDs.  相似文献   

13.
The emission spectra of planar structures based on CdTe and Cd1 ? x Mg x Te containing periodically built-in MnTe layers with a nominal thickness of one monolayer have been investigated. The luminescence spectra and luminescence excitation spectra of manganese ions and excitons, as well as the dependences of the spectra on the temperature and magnetic field strength, are used to determine the actual distribution of manganese ions. The full width at half-maximum of the profile describing the change in the concentration of manganese in the growth direction of the structures is estimated to be 7–8 monolayers.  相似文献   

14.
Capacitance-voltage characteristics of MIS structures based on graded band-gap heteroepitaxial HgCdTe (x = 0.22–0.23 and 0.32–0.36) with grown in situ CdTe as a passivating coating are examined. The average surface-state densities as well as mobile- and fixed-charge densities are determined for the HgCdTe/CdTe, HgCdTe/CdTe–SiO2–Si3N4, and HgCdTe/CdTe–ZnTe systems. It is shown that grown in situ CdTe forms a fairly qualitative interface, and deposition of additional SiO2–Si3N4 and ZnTe layers makes it possible to control the electric strength and charges in the dielectric used.  相似文献   

15.
Raman spectra in superlattices composed of layers of self-assembled CdTe quantum dots separated by ZnTe barriers are investigated. As the barrier thickness increases, a high-frequency shift of all peaks is observed, which is explained by a decrease in the lattice constant averaged over the volume of the entire structure. Peaks are found at a CdTe TO mode frequency of 140 cm?1 and also at 120 cm?1. The first peak is assigned to the symmetric Coulomb (interface) mode of the quantum dot material, and the low-frequency peak is assigned to the symmetric mode of the phonons captured in the quantum dot. This combination of modes in structures with quantum dots has not been observed previously.  相似文献   

16.
A study has been carried out of the temperature dependences of luminescence spectra on a large number of CdTe/ZnTe structures differing in average thickness, 〈L z〉=0.25–4 monolayers (ML), and CdTe layer geometry (continuous, island type). The influence of geometric features in the structure of ultrathin layers on linewidth, the extent of lateral localization of excitons, their binding energy, and exciton-phonon coupling is discussed. It is shown that in island structures there is practically no lateral exciton migration. The exciton-phonon coupling constant in a submonolayer structure has been determined, Γph=53 meV, and it is shown that in structures with larger average thicknesses Γph is considerably smaller. Substantial lateral exciton migration was observed to occur in a quantum well with 〈L z〉=4 ML, and interaction with acoustic phonons was found to play a noticeable part in transport processes. It has been established that the depth of the exciton level in a quantum well and structural features of an ultrathin layer significantly affect the temperature dependences of integrated photoluminescence intensity. Fiz. Tverd. Tela (St. Petersburg) 41, 717–724 (April 1999)  相似文献   

17.
本文报道4.2—300K和20—350cm-1范围内低组份Cd1-xZnxTe混晶远红外吸收与反射光谱。实验观察到Zn及ZnTe在CdTe中诱发的定域模和准定域模以及类CdTe2TA双声子吸收过程。用质量缺陷模型结合格林函数方法估计了模式频率。用等位移模型计算了混晶的双模行为并拟合反射光谱,对类CdTe和类ZnTe模的弛豫与声子吸收强度的温度效应也作了计算和解释。 关键词:  相似文献   

18.
We investigate size-dependent carrier dynamics in self-assembled CdTe/ZnTe quantum dots (QDs) grown using molecular beam epitaxy and atomic layer epitaxy. Photoluminescence (PL) spectra show that the excitonic peak corresponding to transitions from the ground electronic subband to ground heavy-hole band in CdTe/ZnTe QDs shifts to a lower energy with increasing ZnTe buffer thicknesses. This shift of the PL peak can be attributed to size variation of the CdTe QDs. In particular, carrier dynamics in CdTe QDs grown on various ZnTe buffer layer thicknesses is studied using time-resolved PL measurements. As a result, the decay time of CdTe QDs is shown to increase with increasing ZnTe buffer layer thicknesses due to the reduction of the exciton oscillator strength in the larger QDs.  相似文献   

19.
Spin-flip Raman spectra have been obtained for two heterostructures, each containing a single CdTe quantum well and a single Cd1-xMnxTe quantum well, with barriers of Cd1-yMnyTe (y>x). The spectra show a clear sensitivity to the thickness of the central barrier between the two wells. The magnitude of the Raman shifts and the resonance energies help identify the origin of the signals in the structures. When the barrier is broad, two signals are observed, one from each separate well. When the width of the barrier is reduced, a single signal is seen, reflecting the coupling of the electronic states of the two wells. The size of the Raman shifts observed also suggest the presence of a low concentration of donors in the material, which modify the form of the electronic wavefunction in the quantum wells.  相似文献   

20.
The paper reports the results of measurements of the lattice IR reflection and Raman scattering spectra for the Ga1?x AlxP (x=0–0.8) films grown on the GaP(111) substrate by the liquid-phase epitaxy technique. The dispersion analysis of the experimental spectra has demonstrated that, for the studied system of the Ga1?x AlxP alloy, the vibrational spectra of the alloys with different compositions exhibit three modes of the Ga-P vibrations and one mode of the Al-P vibrations. The frequencies of modes only slightly depend on the composition x of the Ga1?x AlxP alloy, but the composition considerably affects the oscillator strengths of these modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号