首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.
Figure
Red blood cell MgFFF fractograms are function of hemoglobin oxidation  相似文献   

2.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

3.
Proteomic studies have stimulated the development of novel stationary phases in miniaturised chromatographic columns that permit high linear flow velocities and exhibit high resolving power. In this work, a 50-microm reversed-phase silica-based monolith was chromatographically characterised for its use in proteomics applications using a nanoLC-MS set-up. It showed high efficiency for the separation of tryptic peptides under isocratic elution conditions (HETP(min)=5-10 microm at 2.4 mm/s). Flow rates up to 1.95 microL/min (18.4 mm/s) and gradient slopes up to an unusually fast 9% could be used. This resulted in rapid separations of peptide mixtures, with peak widths at half height of between 5 and 10 s. The 50-microm monolithic column was used to analyse depleted serum from a cervical cancer patient at a throughput of one sample per 30 min.  相似文献   

4.
A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance.  相似文献   

5.
This work describes a microfluidic device integrated with multichamber polymerase chain reaction (PCR) and multichannel separation for parallel genetic analysis. The microdevice consists of three functional units: temperature control, multiple PCR (four chambers PCR), and multiple channel separation (four separation channels, each channel connected to a PCR chamber). Platinum (Pt)/titanium (Ti) microheater was used to ensure homogeneous temperature field, and Pt-chip sensor was used for temperature monitoring. The interface between chip-PCR and chip separation was simplified by connecting the PCR chamber with separation channel directly. After chip-PCR, PCR products were introduced into parallel separation channels for subsequent separation/detection by applying an electric field automatically. This microdevice was successfully applied for detection of pathogens including hepatitis B virus (HBV) and Mycobacterium tuberculosis (MTB), and genotyping of human leucocyte antigen (HLA)-B27 as well, demonstrating the feasibility of the integrated microdevice for parallel genetic analysis.  相似文献   

6.
Zhong R  Liu D  Yu L  Ye N  Dai Z  Qin J  Lin B 《Electrophoresis》2007,28(16):2920-2926
Microchip-based packed column SPE of DNA was performed using the microfabricated two-weir structure within a microchannel. We developed two methods to fabricate the two-weir structured glass chips: a "two-side etching/alignment" method and a simplified "one-side/two-step etching" method. The former method required a straightforward alignment step, while the latter approach comprised a simplified wet etching process using paraffin wax as the temporary protective layer. Both methods were convenient and rapid as compared to the previous approaches. Through a reversibly sealed bead-introduction channel, beads can be fed into or out of the chip columns, thus enabling refreshment of the packing materials. Using the proposed chip columns, highly efficient lambda-DNA extractions (average recovery >80%) were performed with good chip-to-chip reproducibility (RSD <10%). The on-chip SPE procedure was completed within 15 min at the flow rate of 3 microL/min and the bulk of the loaded DNA was eluted within a small volume of approximately 8 microL. Application of the microchip-based packed columns was demonstrated by purifying PCR-amplifiable genomic DNA from human hepatocellular carcinoma (HepG2) cells and human whole blood samples.  相似文献   

7.
A new platform of a paper-based analytical device (PAD) for simultaneous forward and reverse ABO blood group typing has been reported. This platform can overcome the discrepancy results as influenced by the individual haematocrit. The test and the control of non-haemagglutination on each channel were performed in parallel. The PAD was fabricated by printing six parallel channels with wax onto Whatman No. 4 filter paper. An LF1 blood separation membrane was used for the separation of plasma from whole blood for reverse grouping. The blood group was identified by haemagglutination of the corresponding antigen–antibody. For forward grouping, Anti-A, -B and –A,B were treated on the test line of PAD, and inactivated Anti-A, -B and –A,B were immobilized on the control line. For reverse grouping, 30% standard A-cells, B- and O- were added to the test channel after plasma separation, and O-cells were used as a control. Then, 0.9% normal saline (NSS) containing 1% Tween-20 was bi-functionally used for dilution of the blood sample and elution of the non-agglutinated RBCs within the channels. The distance of agglutinated RBCs in each test line was compared with the distance of non-agglutinated RBCs in the parallel control line. The forward and reverse patterns of blood groups A, B, AB and O were a barcode-like chart in which the results can be visually analysed. The PAD has excellent reproducibility when 10 replications of the A, B, AB or O blood groups were performed. The results of both forward and reverse grouping were highly correlated with conventional methods compared with the slide method and tube method, respectively (n = 76). Thus, this ABO typing PAD holds great potential for future applications in blood typing point-of-care testing.  相似文献   

8.
A simple, reliable and highly sensitive procedure was devised for measuring the levels of Amicar in blood and urine. 100 microL of serum or urine sample was added to 10 microL of a 10% w/v zinc sulfate solution and 100 microL of methanol, as previously described (Lam et al., 1980) for the removal of proteins by precipitation. 50 microL of the supernatant was then mixed with 300 microL of 1 M borate buffer containing D-valine as the internal standard before derivatization with o-phthalaldehyde. The amino acids were then separated by a stereoselective reversed-phase system using a mobile phase containing 10% of acetonitrile in 2.5 mM Cu(II) complexes of L-proline. The chromatography is highly selective, resolving Amicar from L-valine which in turn is resolved from its unnatural D-antipode, the internal standard. The procedure including sample preparation and separation required a total of 15 min. As little as 50 ng/mL of Amicar in body fluids could be detected as the o-phthalaldehyde derivative by fluorescence.  相似文献   

9.
Analytical magnetapheresis is a newly developed technique for separating magnetically susceptible particles. The magnetically susceptible particles are deposited on a bottom plate after flowing through a thin (< 0.05 cm) separation channel under a magnetic field applied perpendicular to the flow. Particles with various magnetic susceptibilities can be selectively deposited and separated by adjusting the applying magnetic force and flow rates. Magnetic susceptibility is an important parameter for magnetic separation. Magnetic susceptibility determination of various ion-labeled red blood cells (RBCs) using analytical magnetapheresis with a simple theoretical treatment is reported in this study. Susceptibility determination is based on the balance between maximal channel flow rate and magnetically induced flow rate for deposition. We tried a new approach to determine particle magnetic susceptibilities using a balance of magnetic and drag forces to control magnetically induced particle velocities. The Er3+, Fe3+, Cu2+, Mn2+, Co2+, and Ni2+ ions were used to label RBC at various labeling concentrations for susceptibility determination. The susceptibilities determined for various ion-labeled RBC under two magnetic field intensities fell within a 10% range. The average viabilities of various ion-labeled RBCs were 96.1 +/- 0.8%. The susceptibility determination generally took less than 10 min. Determined susceptibilities from analytical magnetapheresis differed by 10% from reference measurements using a superconducting quantum interference device (SQUID) magnetometer. The cost and time for analysis is much less using analytical magnetapheresis. This technique can provide a simple, fast, and economical way for particle susceptibility determinations.  相似文献   

10.
As is well known, controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip is significant and has many applications in bioanalysis based on magnetic beads. However, it is a challenge to tailor the magnetic field introduced by external permanent magnets or electromagnets on the micrometer scale. Here, we demonstrated a simple approach to controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip by nickel patterns encapsulated in a thin poly(dimethylsiloxane) (PDMS) film under the fluid channel. With the precisely controlled magnetic field, magnetic bead patterns were convenient to generate. Moreover, two kinds of fluorescent magnetic beads were patterned in the microfluidic channel, which demonstrated that it was possible to generate different functional magnetic bead patterns in situ, and could be used for the detection of multiple targets. In addition, this method was applied to generate cancer cell patterns.  相似文献   

11.
Kim DS  Lee SH  Ahn CH  Lee JY  Kwon TH 《Lab on a chip》2006,6(6):794-802
Blood typing is the most important test for both transfusion recipients and blood donors. In this paper, a low cost disposable blood typing integrated microfluidic biochip has been designed, fabricated and characterized. In the biochip, flow splitting microchannels, chaotic micromixers, reaction microchambers and detection microfilters are fully integrated. The loaded sample blood can be divided by 2 or 4 equal volumes through the flow splitting microchannel so that one can perform 2 or 4 blood agglutination tests in parallel. For the purpose of obtaining efficient reaction of agglutinogens on red blood cells (RBCs) and agglutinins in serum, we incorporated a serpentine laminating micromixer into the biochip, which combines two chaotic mixing mechanisms of splitting/recombination and chaotic advection. Relatively large area reaction microchambers were also introduced for the sake of keeping the mixture of the sample blood and serum during the reaction time before filtering. The gradually decreasing multi-step detection microfilters were designed in order to effectively filter the reacted agglutinated RBCs, which show the corresponding blood group. To achieve the cost-effectiveness of the microfluidic biochip for disposability, the biochip was realized by the microinjection moulding of COC (cyclic olefin copolymer) and thermal bonding of two injection moulded COC substrates in mass production with a total fabrication time of less than 20 min. Mould inserts of the biochip for the microinjection moulding were fabricated by SU-8 photolithography and the subsequent nickel electroplating process. Human blood groups of A, B and AB have been successfully determined with the naked eye, with 3 microl of the whole sample bloods, by means of the fabricated biochip within 3 min.  相似文献   

12.
In this work, a viscosimeter implemented on a microfluidic chip is presented. The physical principle of this system is to use laminar parallel flows in a microfluidic channel. The fluid to be studied flows side by side with a reference fluid of known viscosity. By using optical microscopy, the shape of the interface between both fluids can be determined. Knowing the flow rates of the two liquids and the geometrical features of the channel, the mean shear rate sustained by the fluid and its viscosity can thus be computed. Accurate and precise measurements of the viscosity as a function of the shear rate can be made using less than 300 microL of fluid. Several complex fluids are tested with viscosities ranging from 10(-)(3) to 70 Pa.s.  相似文献   

13.
Shiddiky MJ  Park DS  Shim YB 《Electrophoresis》2005,26(24):4656-4663
A simple and fast method for electrochemical detection of amplified fragments by PCR was successfully developed using CE in a microfluidic device with a modified screen-printed carbon electrode (SPCE). The surfaces of the SPCE were modified with poly-5,2'-5',2'-terthiophene-3'-carboxylic acid, which improves the analysis performance by lowering the detection potential, enhancing the S/N characteristics, and avoiding electrode poisoning. DNA fragments amplified by PCR were separated within 210 s in a 75.5 mm-long coated-separation channel at a separation field strength of -200 V/cm. To minimize the sample adsorption into the inner surface of the capillary wall, which disturbs the separation, a dynamically coated capillary with an acrylamide solution was used. Furthermore, the analysis procedure was simplified and rendered reproducible by using 0.50% w/v hydroxyethylcellulose as a separation matrix in a coated channel. The reproducibility of the analysis employing the coated channel yielded RSD of 4.3% for the peak areas and 1.4% for the migration times in eight repetitive measurements at a modified electrode, compared with 21.3 and 9.4% for a bare electrode. The sensitivity of the assay was 18.74 pAs/(pg/microL) with a detection limit of 584.31 +/- 1.3 fg/microL.  相似文献   

14.
A microfluidic device is described in which an electrospray interface to a mass spectrometer is integrated with a capillary electrophoresis channel, an injector and a protein digestion bed on a monolithic substrate. A large channel, 800 microm wide, 150 microm deep and 15 mm long, was created to act as a reactor bed for trypsin immobilized on 40-60 microm diameter beads. Separation was performed in channels etched 10 microm deep, 30 microm wide and about 45 mm long, feeding into a capillary, attached to the chip with a low dead volume coupling, that was 30 mm in length, with a 50 microm i.d. and 180 microm o.d. Sample was pumped through the reactor bed at flow rates between 0.5 and 60 microL/min. The application of this device for rapid digestion, separation and identification of proteins is demonstrated for melittin, cytochrome c and bovine serum albumin (BSA). The rate and efficiency of digestion was related to the flow rate of the substrate solution through the reactor bed. A flow rate of 1 or 0.5 microL/min was found adequate for complete consumption of cytochrome c or BSA, corresponding to a digestion time of 3-6 min at room temperature. Coverage of the amino acid sequence ranged from 92% for cytochrome c to 71% for BSA, with some missed cleavages observed. Melittin was consumed within 5 s. In contrast, a similar extent of digestion of melittin in a cuvet took 10-15 min. The kinetic limitations associated with the rapid digestion of low picomole levels of substrate were minimized using an integrated digestion bed with hydrodynamic flow to provide an increased ratio of trypsin to sample. This chip design thus provides a convenient platform for automated sample processing in proteomics applications.  相似文献   

15.
As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three‐dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer‐modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle–virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three‐dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate‐buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus–nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL.  相似文献   

16.
Monolithic silica capillary columns were successfully prepared in a fused silica capillary of 530 microm inner diameter and evaluated in HPLC after octadecylsilylation (ODS). Their efficiency and permeability were compared with those of columns pakked with 5-microm and 3-microm ODS-silica particles. The monolithic silica columns having different domain sizes (combined size of through-pore and skeleton) showed 2.5-4.0-times higher permeability (K= 5.2-8.4 x 10(-14) m2) than capillary columns packed with 3-mm particles, while giving similar column efficiency. The monolithic silica capillary columns gave a plate height of about 11-13 microm, or 11 200-13 400 theoretical plates/150 mm column length, in 80% methanol at a linear mobile phase velocity of 1.0 mm/s. The monolithic column having a smaller domain size showed higher column efficiency and higher pressure drop, although the monolithic column with a larger domain size showed better overall column performance, or smaller separation impedance (E value). The larger-diameter (530 microm id) monolithic silica capillary column afforded a good peak shape in gradient elution of proteins at a flow rate of up to 100 microL/min and an injection volume of up to 10 microL.  相似文献   

17.
In this work, a simple isocratic reversed-phase HPLC method for determination of alpha-tocopherol in human erythrocytes has been developed and validated. After separation of plasma the erythrocytes were washed three times with 0.9% sodium chloride containing 0.01% butylated hydroxytoluene (BHT) as antioxidant and then were diluted 1:1 (v/v) with the same solution. In the liquid-liquid extraction (LLE) procedure, 2500 microL of n-hexane was added to 500 microL of erythrocytes. After 2 min this mixture was deproteinized by addition of cool ethanol (500 microL, 5 min) denatured with 5% methanol containing alpha-tocopherol acetate (20 micromol L(-1)), as internal standard, and then extracted for 5 min by vortex mixing. After centrifugation (10 min, 1600xg) an aliquot (2000 microL) of the clean extract was separated and evaporated under nitrogen. The residue was dissolved in 400 microL methanol and analysed by reversed-phase HPLC on a 4.6 mmx150 mm, 5 microm Pecosphere C18 column; the mobile phase was 100% methanol, flow rate 1.2 mL min(-1). The volume injected was 100 microL and detection was by diode-array detector at a wavelength of 295 nm. The extraction recovery of alpha-tocopherol from human erythrocytes was 100.0+/-2.0%. The detection limit was 0.1 micromol L(-1) and a linear calibration plot was obtained in the concentration range 0.5-20.0 micromol L(-1). Within determination precision was 5.2% RSD (n=10), between determination precision was 6.1% RSD (n=10). The method was applied successfully in a clinical study of patients with acute pancreatitis and for determination of the reference values in the healthy Czech population.  相似文献   

18.
A one-step immunomagnetic separation technique was performed on a microfluidic platform for the isolation of specific cells from blood samples. The cell isolation and purification studies targeted T cells, as a model for low abundance cells (about 1:10,000 cells), with more dilute cells as the ultimate goal. T cells were successfully separated on-chip from human blood and from reconstituted blood samples. Quantitative polymerase chain reaction analysis of the captured cells was used to characterize the efficiency of T cell capture in a variety of flow path designs. Employing many (4-8), 50 microm deep narrow channels, with the same overall cross section as a single, 3 mm wide channel, was much more effective in structuring dense enough magnetic bead beds to trap cells in a flowing stream. The use of 8-multiple bifurcated flow paths increased capture efficiencies from approximately 20 up to 37%, when compared to a straight 8-way split design, indicating the value of ensuring uniform flow distribution into each channel in a flow manifold for effective cell capture. Sample flow rates of up to 3 microL min(-1) were evaluated in these capture beds.  相似文献   

19.
A sensitive high-performance liquid chromatographic method with fluorescence detection to determine 3,4-methylenedioxymethamphethamine (MDMA) and 3,4-methylenedioxyamphethamine (MDA) in human and rat whole blood or plasma samples was developed by using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) as a label. MDMA and MDA in a small amount of blood sample (ca 100 microL) were extracted by liquid-liquid extraction with ethyl acetate, and were derivatized with DIB-Cl under mild conditions (10 min at room temperature). A good separation of DIB-derivatives could be achieved within 45 min using a commercially available ODS column with an isocratic eluent of 10 mM citric acid-20 mM Na(2)HPO(4) aqueous buffer (pH 4.0)-CH(3)CN-CH(3)OH (50:45:5, v/v/v %). The calibration curves prepared with 1-methyl-3-phenylpropylamine (MPPA) as an internal standard showed good linearity (r = 0.999) with 0.36-0.83 ng/mL detection limit at a signal-to-noise ratio of 3. MDMA and MDA in rat whole blood could be monitored for 6 h after a single administration of MDMA (2.2 mg/kg, i.p.). The pharmacokinetic parameters for MDMA and MDA obtained by triplicate measurements were 426 +/- 23 and 39 +/- 6 ng/mL (C(max)), 20 +/- 5 and 100 +/- 10 min (T(max)), respectively.  相似文献   

20.
The small amount of lipids from human skin obtained with noninvasive sampling method led us to investigate microanalytical separation techniques. The lipid class analysis was performed with a micro polyvinyl alcohol-silica (PVA-Sil) column. The gradient elution was from heptane to acetone/butanol 90:10 v/v in 4%/min at 78 microL/min. In addition an evaporative light scattering detector (ELSD) was modified for micro-LC. All solvents contained 0.1% of triethylamine and formic acid in stoichiometric amount, which increased the ELSD response. In these conditions, the cholesterol eluted before free fatty acid, and squalene and triglycerides close to the dead volume. The various ceramide classes eluted following the order of the increased number of hydroxyl groups. The LOD for ceramides was 2.2 ng. The advantages of this method are the use of a normal stationary phase more reliable due to its chemical stability, its surface homogeneity and its development in microchromatography without chlorinated solvents which offers small LOD and the whole profile of lipids present in stratum corneum (SC). A method using a narrow-bore PVA-Sil column was used to collect ceramide fraction. Then the molecular species were analysed with a porous graphitic carbon column in capillary LC using a gradient from CH3OH/CHCl3 70:30 v/v to CHCl3 at 2%/min with a flow rate at 5 microL/min. The LOD obtained for ceramide was 1 ng. Both methods were assessed with SC samples obtained by rinsing a 5.7 cm2 area of the forearm with 25 mL of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号