首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of very simple nonparallel flows of a viscous incompressible liquid in an infinite plane channel described by the exact solutions of the Navier-Stokes equations is studied. Such solutions are realized between two parallel porous plates when the liquid (or gas) is forced in at one wall and drawn out at the same velocity at the other, with a steady flow of liquid along the channel. In this case the transverse velocity component is constant, and the profile of the longitudinal velocity component is independent of the longitudinal con-ordinate x, being an asymmetric function of the transverse coordinate y. A study of the hydrodynamic stability then reduces to the solution of an equation differing from the Orr-Sommerfeld equation by virtue of the presence of additional terms containing the transverse velocity component of the main flow. By numerically solving both this equation and the ordinary Orr-Sommerfeld equation and comparing the corresponding results for various inflowing Reynolds numbers R0=v0h/ (v0 is the inflow velocity, h is the width of the channel), the effect of the nonparallel and asymmetrical nature of such flows on their stability is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 125–129, July–August, 1970.  相似文献   

2.
The stability of nonparallel flows of a viscous incompressible fluid in an expanding channel with permeable walls is studied. The fluid is supplied to the channel through the walls with a constant velocity v0 and through the entrance cross section, where a Hamel velocity profile is assigned. The resulting flow in the channel depends on the ratio of flow rates of the mixing streams. This flow was studied through the solution of the Navier—Stokes equations by the finite-difference method. It is shown that for strong enough injection of fluid through the permeable walls and at a distance from the initial cross section of the channel the flow approaches the vortical flow of an ideal fluid studied in [1]. The steady-state solutions obtained were studied for stability in a linear approximation using a modified Orr—Sommerfeld equation in which the nonparallel nature of the flow and of the channel walls were taken into account. Such an approach to the study of the stability of nonparallel flows was used in [2] for self-similar Berman flow in a channel and in [3] for non-self-similar flows obtained through a numerical solution of the Navier—Stokes equations. The critical parameters *, R*, and Cr* at the point of loss of stability are presented as functions of the Reynolds number R0, characterizing the injection of fluid through the walls, and the parameter , characterizing the type of Hamel flow. A comparison is made with the results of [4] on the stability of Hamel flows with R0 = 0.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 125–129, November–December, 1977.The author thanks G.I. Petrov for a discussion of the results of the work at a seminar at the Institute of Mechanics of Moscow State University.  相似文献   

3.
There have been many publications devoted to the investigation of the hydrodynamic stability of nonparallel flows on the basis of the modified Orr-Sommerfeld equation [1–4]. Taking into account the additional terms associated with the presence in the flow of a transverse component of velocity and acceleration can lead not only to a significant quantitative discrepancy as compared with calculations based on the usual Orr-Sommer-feld equation but also to qualitatively new results (nonclosure of the neutral curves for flow on a permeable surface in the presence of strong injection [4]). In this paper an asymptotic solution of the Orr-Sommer-feld equation, valid in the outer region of boundary layer flow, is constructed for self-similar gradient flow over a surface (Falkner-Skan flow). The continuity of the eigenvalue spectrum for an unbounded increase in the perturbation propagation velocity is demonstrated on the basis of the solution obtained. For the ordinary Orr-Sommerfeld equation a continuous transition of the spectrum through the value of the perturbation propagation velocity Cr=1 (which coincides with the velocity of the external flow) is impossible [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 171–173, January–February, 1987.  相似文献   

4.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

5.
Calculations of two types of flows in the initial sections of channels with permeable walls are carried out on the basis of semiempirical turbulence theories during fluid injection only through the walls and during interaction of the external flow with the injected fluid. Experimental studies of the first type [1–3] show that at least within the limits of the lengths L/h<30 and L/a< 50 (2h is the distance between permeable walls of a flat channel anda is the tube radius) the velocity distributions in the laminar and turbulent flow regimes differ little and are nearly self-similar for solutions obtained in [4]. For sufficiently large Reynolds numbers, Re0>100 (Re0=v0h/ or Re0=v0 a/, where v0 is the injection velocity), and small fluid compressibility, the axial velocity component is described by the relations for ideal eddying motion: u=(/2)x× cos (y/2) in a flat channel and u=x cos (y2/2) in atube (the characteristic values for the coordinates are, respectively, h anda). Measurements indicate the existence of a segment of laminar flow; its length depends on the Reynolds number of the injection [3]. In the turbulent regime the maximum generation of turbulent energy occurs significantly farther from the wall than in parallel flow. Flows of the second type in tubes were studied in [5–7]. These studies disclosed that for Reynolds numbers of the flow at the entrance to the porous part of the tube Re=u0 a/<3.103 fluid injection with v0/u0>0.01 leads to suppression of turbu lence in the initial section of the tube. An analogous phenomenon was observed in the boundary layer with v0/u0>0.023 [8, 9]. Laminar-turbulent transition in flows with injection was explained in [10, 11] on the basis of hydrodynamic instability theory, taking into account the non-parallel character of these flows. The mechanisms for the development of turbulence and reverse transition in channels with permeable walls are not theoretically explained. Simple semiempirical turbulence theories apparently are insufficient for this purpose. In the present work results are given of calculations with two-parameter turbulence models proposed in [12, 13] for describing complex flows. Due to the sharp changes of turbulent energy along the channel length, a numerical solution of the complete system of equations of motion was carried out by the finite-difference method [14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 43–48, September–October, 1976.  相似文献   

6.
The inflexion point criterion of Rayleigh is one of the most well-known results in hydrodynamic stability theory but cannot easily be demonstrated experimentally in wall bounded flows. For plane Couette flow, where both walls move with equal speed in opposite directions, it is possible to establish a (time-dependent) inflectional velocity profile if both walls are brought momentarily to rest. If the Reynolds number is high enough a growing stationary instability develops. This situation is ideally suited for flow visualization of the instability. In this paper we show flow visualization experiments and stability calculations of the developing transverse roll cell instability in such a flow at low Reynolds numbers. Although the stability calculations are based on a quasi-stationary velocity profile, the measured and most amplified wave length obtained from the calculations are in excellent agreement.  相似文献   

7.
In this paper the velocity and temperature distributions on a semi-infinite flat plate embedded in a saturated porous medium are obtained for the governing equations (Kaviany [7]) following the technique adopted by Chandrashekara [2] which are concerned with the interesting situations of the existence of transverse, velocity and thermal boundary layers. Here the pressure gradient is just balanced by the first and second order solid matrix resistances for small permeability and observed that by increasing of the flow resistance the asymptotic value for the heat transfer rate increases. Further we concluded that the transverse boundary layers are thicker than that of axial boundary layers. Hence we evaluated the expressions for the boundary layer thickness, the shear stress at the semi-infinite plate and T (the ratio of the thicknesses of the thermal boundary layer and momentum boundary layer). The variations of these quantities for different values of the porous parameterB and the flow resistanceF have been discussed in detail with the help of tables. The curves for velocity and temperature distributions have been plotted for different values ofB andF.Lastly we have evaluated the heat fluxq(x) and found that it depends entirely upon the Reynolds numberRe, Prandtl numberPr,B andF.  相似文献   

8.
9.
A. I. Ruban 《Fluid Dynamics》1983,18(6):882-889
The nonlinear evolution of a Tollmien-Schlichting wave is analyzed with allowance for the flow being nonparallel in a boundary layer. In contrast to the early work of Zel'man [19], strict allowance is made for the fact that the extent to which the flow is nonparallel is not independent of the Reynolds number — the departure from parallel flow in a boundary layer is small only at large Reynolds numbers. Therefore, an asymptotic theory of Tollmien-Schlichting waves is constructed under the assumption that the Reynolds number tends to infinity.  相似文献   

10.
The stability of the laminar flow regime in the boundary layer developed on a wall is increased considerably by the relatively slight extraction of fluid from the wall [1–4]. In the theoretical study of this phenomenon, all the investigators known to the present authors have taken into account only the increase in the fullness of the velocity profile in the boundary layer with suction. Computations of the stability characteristics have been made on the assumption that there are no transverse velocities in the laminar boundary layer.We present below an analysis of the stability of the laminar boundary layer in the presence of a constant transverse velocity in the near-wall region (suction). The calculations made show the existence for a given velocity profile in the boundary layer of a relative suction velocity v=v such that with suction velocities greater than v the flow remains stable at all Reynolds numbers, while the method used in the cited references gives a definite finite critical Reynolds number, equal in our notation to the Reynolds number at v=0, for each relative suction velocity.It was found that with suction of fluid from the boundary layer the region of instability has finite dimensions, i.e., there exist lower and upper critical Reynolds numbers. The flow is stable if its Reynolds number is less than the lower, or greater than the upper values of the critical Reynolds number.The instability region diminishes with increase in the relative suction velocity, and at a value of this velocity which is specific for each value of the velocity profile the instability region degenerates into a point-the flow becomes absolutely stable. Thus, with distributed suction it is advisable to increase the relative suction velocity only to a definite magnitude corresponding to disappearance of the instability region. The computational results presented make it possible to estimate this velocity for velocity profiles ranging from a Blasius profile to an asymptotic profile. Specific calculations were made for a family of Wuest profiles, since under actual conditions with suction there always exists a starting segment of the boundary layer [1, 2].  相似文献   

11.
An experimental investigation was made of the flow of a viscous incompressible liquid in a trench of square transverse cross section, using a laser Doppler velocimeter. The investigation was made with two values of the Reynolds number Re, corresponding to laminar and turbulent flow conditions in the channel. The experimental data show that a core with a constant vorticity is formed in the trench, that a jet propagates near the walls of the trench, and that there are secondary eddies in the corners of the trench. The motion of a viscous liquid in a trench of rectangular cross section is part of a broad class of breakaway flows. Experimental data on the investigation of flow in trenches are extremely few. A majority of the existing information is limited to visual observations [1–4]. In [2, 5, 6] the question of the unstable character of flow in trenches was discussed. Quantitative measurements of stable eddy flows in trenches were made in [7–9] using a thermoanemometer, and in [7] measurements were made of the pressure at the bottom and walls of trenches; there are data on the distribution of the velocity in the middle sections of trenches. In [8] the mean velocity, the intensity of the turbulence, and the stress of the turbulent flow were obtained in several sections parallel to the side walls of the trench, In [9] a measurement was made of the velocities also in two cross sections of a trench in which one component of the velocity prevails. A brief analysis of the existing experimental results shows that these data are insufficient to form a detailed representation of the character of flow in a trench.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 76–86, March–April, 1976.  相似文献   

12.
The problem of stability in a compressible boundary layer, as opposed to an incompressible layer, involves many parameters and requires consideration of three-dimensional perturbations. The transverse component of the velocity, the thermal regime at the wall, etc., take on great significance. Investigation of all aspects of this problem requires systematic calculations performed by electronic computers. There do exist a few calculations of stability of a compressible boundary layer with respect to three-dimensional disturbances for particular cases. It follows from those studies (see, for example, [1]) that consideration of three-dimensional perturbations and of the transverse component of the basic flow velocity is important. Many aspects of this problem remain uninvestigated. Aside from the sheer cumbersomeness of the problem, there exist purely mathematical difficulties connected with the presence of a small parameter with higher derivatives in the differential equations for the perturbations, which causes losses in accuracy of calculation. In this present study an algorithm will be developed for solution of the problem of stability of a compressible boundary layer relative to three-dimensional disturbances with consideration of the transverse component of the basic velocity. Calculations are performed for a boundary layer on a plane thermally insulating plate, and the effects of the transverse velocity component and the three-dimensionality of the perturbations on stability at various Mach numbers are demonstrated.  相似文献   

13.
The stability of slip flows when a surface acoustic wave (SAW) propagating along the walls of a microchannel in the laminar flow regime is investigated. The governing equation which was derived by considering the weakly nonlinear coupling between the deformable wall and streaming slip flow is linearized and then the eigenvalue problem is solved by a numerical code together with the associated interface and slip velocity boundary conditions. The value of the critical Reynolds number was found to be near 1,441 for a Knudsen number being 0.001 (associated with a physical parameter K 0 characterizing the SAW effect) which is much smaller than the static-wall case for conventional pressure-driven flows.  相似文献   

14.
Starting with the experiments carried out by Reynolds in 1894, the flow in Venturi tubes has traditionally been used to study and demonstrate various forms of cavitation. Numerous authors have carried out experimental research on the various flow regimes in diffuser channels [1–7] or have investigated theoretical models of such flows [6, 8]. The occurrence and development of cavitation is closely associated with the phenomenon of turbulent separation complicated by the presence of two-phase flow in the dissipation zone. For a long time these effects were considered separately, until Gogish and Stepanov [9] proposed a single model of cavitation and separation based on the theory of intense interaction of an incompressible potential flow and a turbulent cavitation layer of variable density and embracing the various stages of cavitation. The object of this study is to demonstrate the possibilities of this model with reference to the simple example of flows accompanied by cavitation and separation in plane and axisymmetric diffuser channels of the Venturi tube type with straight and curved walls. The dissipative flow near the walls is described by a quasihomogeneous model of turbulent two-phase flow, in which the presence of two phases is taken into account only by varying the mean density. The potential core of the flow is considered in the one-dimensional formulation. The displacement thickness serves as the flow interaction parameter. The conditions of ocurrence and development of circulatory flows are determined. Examples of symmetrical and nonsymmetrical flows are presented.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 47–54, September–October, 1986.  相似文献   

15.
The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.  相似文献   

16.
In the present study, an axisymmetric turbulent boundary layer growing on a cylinder is investigated experimentally using hot wire anemometry. The combined effects of transverse curvature as well as low Reynolds number on the mean and turbulent flow quantities are studied. The measurements include the mean velocity, turbulence intensity, skewness and flatness factors in addition to wall shear stress. The results are presented separately for the near wall region and the outer region using dimensionless parameters suitable for each case. They are also compared with the results available in the open literature.The present investigation revealed that the mean velocity in near wall region is similar to other simple turbulent flows (flat plate boundary layer, pipe and channel flows); but it differs in the logarithmic and outer regions. Further, for dimensionless moments of higher orders, such as skewness and flatness factors, the main effects of the low Reynolds number and the transverse curvature are present in the near wall region as well as the outer region.  相似文献   

17.
Linear stability of two-dimensional steady flow in wavy-walled channels   总被引:1,自引:0,他引:1  
Linear stability of fully developed two-dimensional periodic steady flows in sinusoidal wavy-walled channels is investigated numerically. Two types of channels are considered: the geometry of wavy walls is identical and the location of the crest of the lower and upper walls coincides (symmetric channel) or the crest of the lower wall corresponds to the furrow of the upper wall (sinuous channel). It is found that the critical Reynolds number is substantially lower than that for plane channel flow and that when the non-dimensionalized wall variation amplitude is smaller than a critical value (about 0.26 for symmetric channel, 0.28 for sinuous channel), critical modes are three-dimensional stationary and for larger , two-dimensional oscillatory instabilities set in. Critical Reynolds numbers of sinuous channel flows are smaller for three-dimensional disturbances and larger for two-dimensional disturbances than those of symmetric channel flows. The disturbance velocity distribution obtained by the linear stability analysis suggests that the three-dimensional stationary instability is mainly caused by local concavity of basic flows near the reattachment point, while the critical two-dimensional mode resembles closely the Tollmien–Schlichting wave for plane Poiseuille flow.  相似文献   

18.
Hot-wire anemometer measurements, using two types of probes, are reported for wall boundary layer flows with particular attention being given to the near-wall region and to measurements at high Reynolds numbers up to R 15,000. To obtain accurate near-wall measurements, the influence of wall proximity on hot-wire readings was eliminated by using a highly insulating wall material. Measurements were carried out with a single hot-wire boundary layer probe to obtain the longitudinal velocity informatemperature-wake sensor for the cross flow tion and a hot-wire, information.The results provided in the paper include measurements of averaged properties like mean velocity, rms-quantities of velocity fluctuations, probability density distributions etc. Conditional averages are also provided in order to yield information related to coherent flow structures present in boundary layer flows. It is shown that these structure remain present up to the highest Reynolds number investigated in the present study. The conditionally averaged data provide quantitative information on the mechanisms that are involved in the production of turbulence in boundary-layer flows.  相似文献   

19.
Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re τ ?=?180, 360, 550 and $1\text{,}000$ . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y ?+??≈?100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.  相似文献   

20.
The stability of a unipolarly charged electrohydrodynamic boundary layer on a flat dielectric plate along which an electric current flows between electrodes located on the plate is investigated within the framework of the linear theory. The solution of the steady-state problem is obtained on the basis of methods developed earlier for conditions typical of aerodynamical experiments and various electric currents and electrode voltages. The effect of the interaction between perturbations of the electric and hydrodynamic flow parameters on the flow stability is estimated within the framework of the locally homogeneous approximation. This effect turns out to be insignificant under the conditions considered. It is shown that steady-state electrohydrodynamic action on the main flow makes it possible to obtain “accelerating” velocity profiles with increased absolute values of the second derivative in the transverse direction. This ensures a significant increase in the critical Reynolds numbers of loss of stability and a narrowing of the growing perturbation wavenumber range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号