首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

2.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

3.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

4.
Based on the very recent work by Dang and Gao (Invers Probl 27:1–9, 2011) and Wang and Xu (J Inequal Appl, doi:10.1155/2010/102085, 2010), and inspired by Yao (Appl Math Comput 186:1551–1558, 2007), Noor (J Math Anal Appl 251:217–229, 2000), and Xu (Invers Probl 22:2021–2034, 2006), we suggest a three-step KM-CQ-like method for solving the split common fixed-point problems in Hilbert spaces. Our results improve and develop previously discussed feasibility problem and related algorithms.  相似文献   

5.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

6.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

7.
In a general Hausdorff topological vector space E, we associate to a given nonempty closed set S???E and a bounded closed set Ω???E, the minimal time function T S defined by $T_{S,\Omega}(x):= \inf \{ t> 0: S\cap (x+t\Omega)\not = \emptyset\}$ . The study of this function has been the subject of various recent works (see Bounkhel (2012, submitted, 2013, accepted); Colombo and Wolenski (J Global Optim 28:269–282, 2004, J Convex Anal 11:335–361, 2004); He and Ng (J Math Anal Appl 321:896–910, 2006); Jiang and He (J Math Anal Appl 358:410–418, 2009); Mordukhovich and Nam (J Global Optim 46(4):615–633, 2010) and the references therein). The main objective of this work is in this vein. We characterize, for a given Ω, the class of all closed sets S in E for which T S is directionally Lipschitz in the sense of Rockafellar (Proc Lond Math Soc 39:331–355, 1979). Those sets S are called Ω-epi-Lipschitz. This class of sets covers three important classes of sets: epi-Lipschitz sets introduced in Rockafellar (Proc Lond Math Soc 39:331–355, 1979), compactly epi-Lipschitz sets introduced in Borwein and Strojwas (Part I: Theory, Canad J Math No. 2:431–452, 1986), and K-directional Lipschitz sets introduced recently in Correa et al. (SIAM J Optim 20(4):1766–1785, 2010). Various characterizations of this class have been established. In particular, we characterize the Ω-epi-Lipschitz sets by the nonemptiness of a new tangent cone, called Ω-hypertangent cone. As for epi-Lipschitz sets in Rockafellar (Canad J Math 39:257–280, 1980) we characterize the new class of Ω-epi-Lipschitz sets with the help of other cones. The spacial case of closed convex sets is also studied. Our main results extend various existing results proved in Borwein et al. (J Convex Anal 7:375–393, 2000), Correa et al. (SIAM J Optim 20(4):1766–1785, 2010) from Banach spaces and normed spaces to Hausdorff topological vector spaces.  相似文献   

8.
The purpose of this article is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for closed and quasi-strict pseudo-contractions. Its results hold in reflexive, strictly convex and smooth Banach spaces with the property (K). The results of this paper improve and extend the corresponding results of Matsushita and Takahashi (J. Approx. Theory 134:257–266, 2005), Qin and Su (Nonlinear Anal. 67:1958–1965, 2007), Marino and Xu (J. Math. Anal. Appl. 329:336–346, 2007) and others.  相似文献   

9.
Second-order elliptic operators with unbounded coefficients of the form ${Au := -{\rm div}(a\nabla u) + F . \nabla u + Vu}$ in ${L^{p}(\mathbb{R}^{N}) (N \in \mathbb{N}, 1 < p < \infty)}$ are considered, which are the same as in recent papers Metafune et?al. (Z Anal Anwendungen 24:497–521, 2005), Arendt et?al. (J Operator Theory 55:185–211, 2006; J Math Anal Appl 338: 505–517, 2008) and Metafune et?al. (Forum Math 22:583–601, 2010). A new criterion for the m-accretivity and m-sectoriality of A in ${L^{p}(\mathbb{R}^{N})}$ is presented via a certain identity that behaves like a sesquilinear form over L p ×?L p'. It partially improves the results in (Metafune et?al. in Z Anal Anwendungen 24:497–521, 2005) and (Metafune et?al. in Forum Math 22:583–601, 2010) with a different approach. The result naturally extends Kato’s criterion in (Kato in Math Stud 55:253–266, 1981) for the nonnegative selfadjointness to the case of p ≠?2. The simplicity is illustrated with the typical example ${Au = -u\hspace{1pt}'' + x^{3}u\hspace{1pt}' + c |x|^{\gamma}u}$ in ${L^p(\mathbb{R})}$ which is dealt with in (Arendt et?al. in J Operator Theory 55:185–211, 2006; Arendt et?al. in J Math Anal Appl 338: 505–517, 2008).  相似文献   

10.
Z. Ercan 《Positivity》2014,18(2):219-221
A new and simple proof of the main result of the paper “Laterally closed lattice homomorphisms” by Toumi and Toumi (J Math Anal Appl 324:1178–1194, 2006) is given following the paper “Extension of Riesz homomorphisms, I” by Buskes (J Aust Math Soc Ser A 39(1):107–120, 1985).  相似文献   

11.
Given two bounded linear operators $P$ and $Q$ on a Banach space the formula for the Drazin inverse of $P+Q$ is given, under the assumptions $P^2 Q+PQ^2=0$ and $P^3 Q=PQ^3=0$ . In particular, some recent results arising in Drazin (Am Math Mon 65:506–514, 1958), Hartwig et al. (Linear Algebra Appl 322:207–217, 2001) and Castro-González et al. (J Math Anal Appl 350:207–215, 2009) are extended.  相似文献   

12.
In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset \(C(t)\) , supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set \(C(t)\) . This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976]. Assuming that the moving subset \(C(t)\) has a continuous variation for every \(t\in [0,T]\) with \(C(0)\) bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krej?? in Eur J Appl Math 2:281–292, 1991), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179–186, 1973 and Cornet in J. Math. Anal. Appl. 96:130–147, 1983), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work.  相似文献   

13.
We continue the study of topologies of strong uniform convergence on bornologies initiated in Beer and Levi (J Math Anal Appl 350:568–589, 2009, Set-Valued Var Anal 18:251–275, 2010). We study cardinal invariants of topologies of (strong) uniform convergence on bornologies on the space of continuous real-valued functions, and we also generalize some known results from the literature.  相似文献   

14.
We generalize and extend results of the series of papers by Greenbaum and Strako? (IMA Vol Math Appl 60:95–118, 1994), Greenbaum et al. (SIAM J Matrix Anal Appl 17(3):465–469, 1996), Arioli et al. (BIT 38(4):636–643, 1998) and Duintjer Tebbens and Meurant (SIAM J Matrix Anal Appl 33(3):958–978, 2012). They show how to construct matrices with right-hand sides generating a prescribed GMRES residual norm convergence curve as well as prescribed Ritz values in all iterations, including the eigenvalues, and give parametrizations of the entire class of matrices and right-hand sides with these properties. These results assumed that the underlying Arnoldi orthogonalization processes are breakdown-free and hence considered non-derogatory matrices only. We extend the results with parametrizations of classes of general nonsingular matrices with right-hand sides allowing the early termination case and also give analogues for the early termination case of other results related to the theory developed in the papers mentioned above.  相似文献   

15.
In this paper, two kinds of parametric generalized vector equilibrium problems in normed spaces are studied. The sufficient conditions for the continuity of the solution mappings to the two kinds of parametric generalized vector equilibrium problems are established under suitable conditions. The results presented in this paper extend and improve some main results in Chen and Gong (Pac J Optim 3:511–520, 2010), Chen and Li (Pac J Optim 6:141–152, 2010), Chen et al. (J Glob Optim 45:309–318, 2009), Cheng and Zhu (J Glob Optim 32:543–550, 2005), Gong (J Optim Theory Appl 139:35–46, 2008), Li and Fang (J Optim Theory Appl 147:507–515, 2010), Li et al. (Bull Aust Math Soc 81:85–95, 2010) and Peng et al. (J Optim Theory Appl 152(1):256–264, 2011).  相似文献   

16.
We present a local as well as a semilocal convergence analysis for Newton’s method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. Our hypotheses involve m-Fréchet-differentiable operators and general Lipschitz-type hypotheses, where m≥2 is a positive integer. The new convergence analysis unifies earlier results; it is more flexible and provides a finer convergence analysis than in earlier studies such as Argyros in J. Comput. Appl. Math. 131:149–159, 2001, Argyros and Hilout in J. Appl. Math. Comput. 29:391–400, 2009, Argyros and Hilout in J. Complex. 28:364–387, 2012, Argyros et al. Numerical Methods for Equations and Its Applications, CRC Press/Taylor & Francis, New York, 2012, Gutiérrez in J. Comput. Appl. Math. 79:131–145, 1997, Ren and Argyros in Appl. Math. Comput. 217:612–621, 2010, Traub and Wozniakowski in J. Assoc. Comput. Mech. 26:250–258, 1979. Numerical examples are presented further validating the theoretical results.  相似文献   

17.
In this paper, we consider an n-species competition predator-prey system on time scales with Holling-type II functional response and multiple exploited (or harvesting) terms, which contains n?1 competing preys and one predator. By using the continuation theorem based on Gaines and Mawhin’s coincidence degree theory, easily verifiable criteria are established for global existence of multiple positive periodic solutions to the above system. In addition, our results generalize the corresponding results of Zhang and Hou (Nonlinear Anal. (RWA) 11:1560–1571, 2010), Fan and Wang (J. Math. Anal. Appl. 262:179–190, 2001), Ding and Lu (Appl. Math. Model. 33:2748–2756, 2009).  相似文献   

18.
A local as well as a semilocal convergence analysis for Newton–Jarratt–type iterative method for solving equations in a Banach space setting is studied here using information only at a point via a gamma-type condition (Argyros in Approximate Solution of Operator Equations with Applications, [2005]; Wang in Chin. Sci. Bull. 42(7):552–555, [1997]). This method has already been examined by us in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]), where the order of convergence four was established using however information on the domain of the operator. In this study we also establish the same order of convergence under weaker conditions. Moreover we show that all though we use weaker conditions the results obtained here can be used to solve equations in cases where the results in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]) cannot apply. Our method is inverse free, and therefore cheaper at the second step in contrast with the corresponding two–step Newton methods. Numerical Examples are also provided.  相似文献   

19.
20.
In this paper we study gradient estimates for the positive solutions of the porous medium equation: $$u_t=\Delta u^m$$ where m>1, which is a nonlinear version of the heat equation. We derive local gradient estimates of the Li–Yau type for positive solutions of porous medium equations on Riemannian manifolds with Ricci curvature bounded from below. As applications, several parabolic Harnack inequalities are obtained. In particular, our results improve the ones of Lu, Ni, Vázquez, and Villani (in J. Math. Pures Appl. 91:1–19, 2009). Moreover, our results recover the ones of Davies (in Cambridge Tracts Math vol. 92, 1989), Hamilton (in Comm. Anal. Geom. 1:113–125, 1993) and Li and Xu (in Adv. Math. 226:4456–4491, 2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号