首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An iterative method for finding a solution of the equation f(x)=0f(x)=0 is presented. The method is based on some specially derived quadrature rules. It is shown that the method can give better results than the Newton method.  相似文献   

2.
In this paper, we combine trust region technique with line search technique to develop an iterative method for solving semismooth equations. At each iteration, a trust region subproblem is solved. The solution of the trust region subproblem provides a descent direction for the norm of a smoothing function. By using a backtracking line search, a steplength is determined. The proposed method shares advantages of trust region methods and line search methods. Under appropriate conditions, the proposed method is proved to be globally and superlinearly convergent. In particular, we show that after finitely many iterations, the unit step is always accepted and the method reduces to a smoothing Newton method.  相似文献   

3.
An iterative method for solving nonlinear functional equations, viz. nonlinear Volterra integral equations, algebraic equations and systems of ordinary differential equation, nonlinear algebraic equations and fractional differential equations has been discussed.  相似文献   

4.
An iterative solution process for systems of linear algebraic equations is proposed. It converges starting from any initial approximation and theoretically does not require preliminary transformation of the input data.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 55, pp. 64–68, 1985.  相似文献   

5.
6.
7.
The object of this paper is to construct a new efficient iterative method for solving nonlinear equations. This method is mainly based on Javidi paper [1] by using a new scheme of a modified homotopy perturbation method. This new method is of the fifth order of convergence, and it is compared with the second-, third-, fifth-, and sixth-ordermethods. Some numerical test problems are given to show the accuracy and fast convergence of the method proposed.  相似文献   

8.
A general procedure is given for solving large sets of linear equations by first rewriting them in a form suitable for aggregation of both the variables and equations, followed by disaggregation. A computational algorithm which iteratively aggregates and disaggregates is shown to converge geometrically to the exact solution. Provided the original problem has a structure suitable for such aggregation, the algorithm exhibits fast computation times, small main-memory requirements, and robustness to the starting point. A rigorous foundation for aggregation and disaggregation is provided by the equations employed by this algorithm.  相似文献   

9.
A new eighth-order iterative method for solving nonlinear equations   总被引:1,自引:0,他引:1  
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of , which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method.  相似文献   

10.
The present paper illustrates an iterative numerical method to solve nonlinear equations of the form f(x) = 0, especially those containing the partial and non partial involvement of transcendental terms. Comparative analysis shows that the present method is faster than Newton-Raphson method, hybrid iteration method, new hybrid iteration method and others. Cost is also found to be minimum than these methods. The beauty in our method can be seen because of the optimization in important effecting factors, i.e. lesser number of iteration steps, lesser number of functional evaluations and lesser value of absolute error in final as well as in individual step as compared to the other methods. This work also demonstrates the higher order convergence of the present method as compared to others without going to the computation of second derivative.  相似文献   

11.
On an iterative method for solving absolute value equations   总被引:1,自引:0,他引:1  
We suggest an iterative method for solving absolute value equation Ax ? |x| = b, where \({A\in R^{n\times n}}\) is symmetric matrix and \({b\in R^{n}}\), coupled with the minimization technique. We also discuss the convergence of the proposed method. Some examples are given to illustrate the implementation and efficiency of the method.  相似文献   

12.
This paper is concerned with solutions to the so-called coupled Sylvester-transpose matrix equations, which include the generalized Sylvester matrix equation and Lyapunov matrix equation as special cases. By extending the idea of conjugate gradient method, an iterative algorithm is constructed to solve this kind of coupled matrix equations. When the considered matrix equations are consistent, for any initial matrix group, a solution group can be obtained within finite iteration steps in the absence of roundoff errors. The least Frobenius norm solution group of the coupled Sylvester-transpose matrix equations can be derived when a suitable initial matrix group is chosen. By applying the proposed algorithm, the optimal approximation solution group to a given matrix group can be obtained by finding the least Frobenius norm solution group of new general coupled matrix equations. Finally, a numerical example is given to illustrate that the algorithm is effective.  相似文献   

13.
We describe an iterative method for solving absolute value equations. The result gives a sufficient condition for unique solvability of these equations for arbitrary right-hand sides. This sufficient condition is compared with that one by Mangasarian and Meyer.  相似文献   

14.
15.
In this paper, we propose a new distinctive version of a generalized Newton method for solving nonsmooth equations. The iterative formula is not the classic Newton type, but an exponential one. Moreover, it uses matrices from B‐differential instead of generalized Jacobian. We prove local convergence of the method and we present some numerical examples.  相似文献   

16.
Solving systems of nonlinear equations is a relatively complicated problem for which a number of different approaches have been proposed. In this paper, we employ the Homotopy Analysis Method (HAM) to derive a family of iterative methods for solving systems of nonlinear algebraic equations. Our approach yields second and third order iterative methods which are more efficient than their classical counterparts such as Newton’s, Chebychev’s and Halley’s methods.  相似文献   

17.
An iterative scheme for solving ill-posed nonlinear operator equations with monotone operators is introduced and studied in this paper. A discrete version of the Dynamical Systems Method (DSM) algorithm for stable solution of ill-posed operator equations with monotone operators is proposed and its convergence is proved. A discrepancy principle is proposed and justified. A priori and a posteriori stopping rules for the iterative scheme are formulated and justified. AMS subject classification (2000)  47J05, 47J06, 47J35, 65R30  相似文献   

18.
19.
We revisit a fast iterative method studied by us in [I.K. Argyros, On a two-point Newton-like method of convergent order two, Int. J. Comput. Math. 88 (2) (2005) 219-234] to approximate solutions of nonlinear operator equations. The method uses only divided differences of order one and two function evaluations per step. This time we use a simpler Kantorovich-type analysis to establish the quadratic convergence of the method in the local as well as the semilocal case. Moreover we show that in some cases our method compares favorably, and can be used in cases where other methods using similar information cannot [S. Amat, S. Busquier, V.F. Candela, A class of quasi-Newton generalized Steffensen's methods on Banach spaces, J. Comput. Appl. Math. 149 (2) (2002) 397-406; D. Chen, On the convergence of a class of generalized Steffensen's iterative procedures and error analysis, Int. J. Comput. Math. 31 (1989) 195-203]. Numerical examples are provided to justify the theoretical results.  相似文献   

20.
This paper concerns with the statistical methods for solving general linear systems. After a brief review of Bayesian perspective for inverse problems,a new and efficient iterative method for general linear systems from a Bayesian perspective is proposed.The convergence of this iterative method is proved,and the corresponding error analysis is studied.Finally, numerical experiments are given to support the efficiency of this iterative method,and some conclusions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号