首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
程荣军  葛红霞 《中国物理 B》2010,19(9):90201-090201
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson’s equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.  相似文献   

2.
In this paper, we have investigated the motion of a heated viscoelastic fluid layer in a rectangular tank that is subjected to a horizontal periodic oscillation. The mathematical model of the current problem is communicated with the linearized Navier–Stokes equation of the viscoelastic fluid and heat equation together with the boundary conditions that are solved by means of Laplace transform. Time domain solutions are consequently computed by using Durbin's numerical inverse Laplace transform scheme. Various numerical results are provided and thereby illustrated graphically to show the effects of the physical parameters on the free-surface elevation time histories and heat distribution. The numerical applications revealed that increasing the Reynolds number as well as the relaxation time parameter leads to a wider range of variation of the free-surface elevation, especially for the short time history.  相似文献   

3.
Xiaoyun Jiang  Mingyu Xu 《Physica A》2010,389(17):3368-3374
In this paper a time fractional Fourier law is obtained from fractional calculus. According to the fractional Fourier law, a fractional heat conduction equation with a time fractional derivative in the general orthogonal curvilinear coordinate system is built. The fractional heat conduction equations in other orthogonal coordinate systems are readily obtainable as special cases. In addition, we obtain the solution of the fractional heat conduction equation in the cylindrical coordinate system in terms of the generalized H-function using integral transformation methods. The fractional heat conduction equation in the case 0<α≤1 interpolates the standard heat conduction equation (α=1) and the Localized heat conduction equation (α→0). Finally, numerical results are presented graphically for various values of order of fractional derivative.  相似文献   

4.
The generation of ultrasound by pulsed lasers is a thermoelastic process, and in the literature on general thermoelasticity there are presently three different forms of the heat equation in popular use, the classical, Lord-Schulman (LS), and Green-Lindsay (GL) heat equations. The question may thus arise as to which heat equation should be used to model laser generated ultrasound. The purpose of this work is to summarize the current rationale for using these different heat equations, in order to provide a basis for choosing one of the forms. A review of the classical, LS and GL theories is given, and the potential advantages of hyperbolic heat flow theories in laser ultrasonics are discussed. A numerical example is given that clearly shows the small time differences these theories predict, and also points out potential problems with using hyperbolic heat equations on small time scales.  相似文献   

5.
The meshless local Petrov–Galerkin (MLPG) method in conjunction with the modified precise time step integration method in the time domain is proposed for transient heat conduction analysis in this paper. The MLPG method is often referred to as a truly meshless method because it requires no elements or background cells for either field interpolation or background integration. Local weak forms are developed using weighted residual method locally from the partial differential equation of transient heat conduction. In order to simplify the treatment of essential boundary conditions, the natural neighbour interpolation (NNI) is employed for the construction of trial functions. Moreover, the three-node triangular FEM shape functions are taken as test functions to reduce the order of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with modified precise time step integration method in the time domain. The availability and accuracy of the present method for transient heat conduction analysis are tested through numerical examples.  相似文献   

6.
王兆清  钱航  李金 《计算物理》2021,38(1):16-24
考虑热传导方程的移动边界问题,其定解区域随着时间而变化.构造一种时空域上的高精度数值算法求解1+1维移动边界问题.在时空域上假设一个初始移动边界位置,构成移动边界问题的不规则计算区域,选择一个适当的正则区域(矩形区域)完全覆盖所计算的不规则区域,在正则区域上利用移动边界约束条件和固定边界条件,采用时空域重心插值配点法求...  相似文献   

7.
We investigate the inverse problem associated with the heat equation involving recovery of initial temperature distribution in a two-layer cylinder with perfect thermal contact at the interface. The heat equation is solved backward in time to obtain a relationship between the final temperature distribution and the initial temperature profile. An integral representation for the problem is found, from which a formula for initial temperature is derived using Picard’s criterion and the singular system of the associated operators. The known final temperature profile can be used to recover the initial temperature distribution from the formula derived in this paper. A robust method to regularize the outcome by introducing a small parameter in the governing equation is also presented. It is demonstrated with the help of a numerical example that the hyperbolic model gives better results as compared to the parabolic heat conduction model.  相似文献   

8.
边界净流条件下的超声速热波   总被引:1,自引:1,他引:0       下载免费PDF全文
 物质中的辐射热波的行为一直是人们非常关注的问题。但是由于辐射热传导方程具有很强的非线性,其精确的解析解很难求出。利用微扰论推导出了任意边界净流条件下的边界温度的变化行为和热波传播轨迹的理论公式,并与辐射流体力学程序计算的数值结果进行了对比,结果显示理论计算的热波轨迹与数值模拟的结果符合得非常好。  相似文献   

9.
物质中的辐射热波的行为一直是人们非常关注的问题。但是由于辐射热传导方程具有很强的非线性,其精确的解析解很难求出。利用微扰论推导出了任意边界净流条件下的边界温度的变化行为和热波传播轨迹的理论公式,并与辐射流体力学程序计算的数值结果进行了对比,结果显示理论计算的热波轨迹与数值模拟的结果符合得非常好。  相似文献   

10.
间断有限元方法求解一维非平衡辐射扩散方程   总被引:2,自引:0,他引:2  
张荣培  蔚喜军  崔霞  冯涛 《计算物理》2012,29(5):641-646
研究一维非平衡辐射扩散方程的数值方法.通过求解间断系数热传导方程的广义黎曼问题,得到一种带加权数值流量,基于该数值流量构造了一类新型的间断有限元方法.在时间离散上采用向后Euler方法,形成的非线性方程组采用Picard迭代求解.数值试验表明该方法具有捕捉大梯度的能力,而且能适应扩散系数间断的情形.  相似文献   

11.
In this paper moving mesh methods are used to simulate the blowup in a reaction–diffusion equation with traveling heat source. The finite-time blowup occurs if the speed of the movement of the heat source remains sufficiently low, and the blowup procedure is not fixed at one point not like that for stationary heat source. As time goes to the blowup time, the blowup profile converges to a stationary state. In the simulation a new moving mesh algorithm is designed to deal with the difficulty caused by the delta function in the traveling heat source. The convergence rates are verified and new blowup figures are generated from the numerical experiments.  相似文献   

12.
An integral method is developed to solve the inverse problem of determining the oscillatory heat release distribution from the knowledge of the acoustic pressure field within a combustor. Unlike earlier approaches, in which the problem is formulated in terms of Fredholm integral equation, the inverse problem is reformulated in terms of Volterra integral equation. This reformulation, valid for low Mach numbers (M2 < 1), facilitates the recovery of heat release at all frequencies. The resulting Volterra integral equation is solved using both direct numerical method and implicit least-squares method. The results show that the implicit least-squares method is superior to the direct numerical method and yields accurate determination of heat release at all frequencies.  相似文献   

13.
In this research work we introduce and analyze an explicit conservative finite difference scheme to approximate the solution of initial-boundary value problems for a class of limited diffusion Fokker–Planck equations under homogeneous Neumann boundary conditions. We show stability and positivity preserving property under a Courant–Friedrichs–Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model problem of the mentioned limited diffusion Fokker–Planck equations. We analyze its dynamics and observe the presence of a singular flux and an implicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We present numerical approximations of the solution of the relativistic heat equation for a set of examples in one and two dimensions including continuous initial data that develops jump discontinuities in finite time. We perform the numerical experiments through a class of explicit high order accurate conservative and stable numerical schemes and a semi-implicit nonlinear Crank–Nicolson type scheme.  相似文献   

14.
Numerical simulation of antennae is a topic in computational lectromagnetism, which is concerned with the numerical study of Maxwell equations. By discrete exterior calculus and the lattice gauge theory with coefficient R, weobtain the Bianchi identity on prism lattice. By defining an inner product of discrete differential forms, we derive the source equation and continuity equation. Those equations compose the discrete Maxwell equations in vacuum case on discrete manifold, which are implemented on Java development platform to simulate the Gaussian pulse radiation on antennaes.  相似文献   

15.
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.  相似文献   

16.
In this research a numerical technique is developed for the one-dimensional heat equation that combines classical and integral boundary conditions. New matrix formulation techniques with arbitrary polynomial bases are proposed for the numerical/analytical solution of this kind of partial differential equation. We give a simple and efficient algorithm based on an iterative process for numerical solution of the method.  相似文献   

17.
The temperature increment due to the Joule heating in a nanopillar spin transfer torque system is investigated. We obtain a time-dependent analytic solution of the heat conduction equation in nanopillar geometry by using the Green's function method after some simplifications of the problem. While Holm's equation is applicable only to steady states in metallic systems, our solution describes the time dependence and is also applicable to a nanopillar-shaped magnetic tunneling junction with an insulator barrier layer. The validity of the analytic solution is confirmed by numerical finite element method simulations and by the comparison with Holm's equation.  相似文献   

18.
This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials (FGMs). The three methods are, respectively, the method of fundamental solution (MFS), the boundary knot method (BKM), and the collocation Trefftz method (CTM) in conjunction with Kirchhoff transformation and various variable transformations. In the analysis, Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions. The proposed MFS, BKM and CTM are mathematically simple, easy-to-programming, meshless, highly accurate and integration-free. Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered, and the results are compared with those from meshless local boundary integral equation method (LBIEM) and analytical solutions to demonstrate the efficiency of the present schemes.  相似文献   

19.
压力陡降及容积加热条件下气—液两相系统瞬态分析   总被引:5,自引:0,他引:5  
用一种解析与数值相结合的方法预测饱和液体在压力陡降及具有内热源条件下的瞬态响应。  相似文献   

20.
The differential equation of heat transfer with allowance for energy dissipation and spatial and temporal nonlocality has been derived by the relaxation of heat flux and temperature gradient in the Fourier law formula for the heat flux at the use of the heat balance equation. An investigation of the numerical solution of the heat-transfer problem at a laminar fluid flow in a plane duct has shown the impossibility of an instantaneous acceptance of the boundary condition of the first kind — the process of its settling at small values of relaxation coefficients takes a finite time interval the duration of which is determined by the thermophysical and relaxation properties of the fluid. At large values of relaxation coefficients, the use of the boundary condition of the first kind is possible only at Fo → ∞. The friction heat consideration leads to the alteration of temperature profiles, which is due to the rise of the intervals of elevated temperatures in the zone of the maximal velocity gradients. With increasing relaxation coefficients, the smoothing of temperature profiles occurs, and at their certain high values, the fluid cooling occurs at a gradientless temperature variation along the transverse spatial variable and, consequently, the temperature proves to be dependent only on time and on longitudinal coordinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号