首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and cross kink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensionai nonlinear wave field.  相似文献   

2.
We investigate a new class of periodic solutions to (2+1)-dimensional KdV equations, by both the linear superposition approach and the mapping deformation method. These new periodic solutions are suitable combinations of the periodic solutions to the (2+1)-dimensional KdV equations obtained by means of the Jacobian elliptic function method, but they possess different periods and velocities.  相似文献   

3.
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.  相似文献   

4.
For describing various complex nonlinear phenomena in the realistic world, the higher-dimensional nonlinear evolution equations appear more attractive in many fields of physical and engineering sciences. In this paper, by virtue of the Hirota bilinear method and Riemann theta functions, the periodic wave solutions for the (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev Petviashvili (KP) equation are obtained. Furthermore, it is shown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.  相似文献   

5.
Periodic wave solutions to the dispersive long-wave equations are obtained by using the F-expansion method, which can be thought of as a generalization of the Jacobi elliptic function method. In the limit case, solitary wave solutions are obtained as well.  相似文献   

6.
Based upon a further extended tanh method [Phys. Lett. A307 (2003) 269; Chaos, Solitons and Fractals 17 (2003) 669] and the symbolic computation system, Maple, we consider the (2 1)-dimensional dispersive long waveequations. We obtain many new solutions of the equation. These solutions contain solitomlike solutions, periodic form solutions, and some rational solutions.  相似文献   

7.
An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.  相似文献   

8.
WU  Jian-Ping 《理论物理通讯》2010,53(5):812-814
Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica.  相似文献   

9.
An algebraic method with symbolic computation is devised to uniformly construct a series of exact solutions of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawda equation. The solutions obtained in this paper include solitary wave solutions, rational solutions, triangular periodic solutions, Jacobi and Weierstrass doubly periodic solutions. Among them, the Jacobi periodic solutions exactly degenerate to the solutions at a certain limit condition. Compared with most existing tanh method, the method used here can give new and more general solutions. More importantly, this method provides a guldeline to classifj, the various types of the solution according to some parameters.  相似文献   

10.
A (2+1)-dimensional nonlinear partial differential evolution (NLPDE) equation is presented as a model equation for relaxing high-rate processes in active barothropic media. With the aid of symbolic computation and Hirota's method, some typical solitary wave solutions to this (2+1)-dimensional NLPDE equation are unearthed. As a result, depending on the dissipative parameter, single and multivalued solutions are depicted.  相似文献   

11.
The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.  相似文献   

12.
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.  相似文献   

13.
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.  相似文献   

14.
In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+ 1)-dimensional KK equation by the symmetry method and the (G1/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions.  相似文献   

15.
A new Baecklund transformation for (2 1)-dimensional KdV equation is first obtained by using homogeneous balance method. And making use of the Baecklund transformation and choosing a special seed solution, we get special types of solitary wave solutions. Finally a general variable separation solution containing two arbitrary functions is constructed, from which abundant localized coherent structures of the equation in question can be induced.  相似文献   

16.
WEN  Xiao-Yong 《理论物理通讯》2009,51(5):789-793
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.  相似文献   

17.
Seeking exact analytical solutions of nonlinear evolution equations is of fundamental importance in mathematlcal physics. In this paper, based on a constructive algorithm and symbolic computation, abundant new exact solutions of the (2+1)-dimensional dispersive long wave equations are obtained, among which there are soliton-like solutions, mult-soliton-like solutions and formal periodic solutions, etc. Certain special solutions are considered and some interesting localized structures are revealed.  相似文献   

18.
The functional variable separation approach is applied to study extended (1+2)-dimensional nonlinear wave equations. Complete classification for those equations admitting the functional separable solutions and some exact separable solutions are obtained.  相似文献   

19.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

20.
In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1 + 1 )-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号