首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.  相似文献   

2.
This paper investigates the projective synchronization and lag synchronization of a new hyperchaotic system [Physica A 364 (2006) 103]. On the basis of Lyapunov stability theory, two novel nonlinear controllers are respectively designed to guarantee the global exponential projective synchronization (including complete synchronization and antisynchronization) and lag synchronization. Finally, numerical simulations are given to show the effectiveness of the main results.  相似文献   

3.
In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.  相似文献   

4.
LI Xin 《理论物理通讯》2009,52(2):274-278
In this paper, a nonlinear control scheme of two identical hyperchaotic Chensystems is developed to realize their modified projective synchronization.We achieve modified projective synchronization between the two identicalhyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.  相似文献   

5.
6.
In this paper, a systematic and powerful scheme is proposed to address a generalized-type synchronization of a class of continuous-time systems, which includes generalized lag synchronization, generalized anticipated synchronization, and generalized synchronization. The presented scheme is used to investigate the generalized-type synchronization of the 4D hyperchaotic oscillator and the hyperchaotic oscillator with gyrators. Numerical simulations are used to verify the effectiveness of the proposed scheme. The scheme is more powerful than the scalar signal scheme due to Grassi and Mascolo.  相似文献   

7.
Tae  H.  Lee Ju  H.  Park 《中国物理快报》2009,(9):69-72
We explain the functional projective lag synchronization of a hyperchaotic Rossler system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. Based on Lyapunov stability theory, an active control method and adaptive control law are employed to make the states of two hyperchaotic Rossler systems asymptotically synchronized. Finally, some numerical examples are provided to show the effectiveness of our results.  相似文献   

8.
In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic system. With the aid of symbolic-numeric computation, we use the scheme to study the function projective synchronization between 2D Lorenz discrete-time system and Hdnon discrete-time system, as well as that between 3D discrete-time hyperchaotic system and Henon-like map via three scalar controllers, respectively. Moreover numerical simulations are used to verify the effectiveness of the proposed scheme.  相似文献   

9.
In this paper, a systematic and powerful scheme is proposed to address a generalized-type synchronization of a class of continuous-time systems, which includes generalized lag synchronization, generalized anticipated synchronization, and generalized synchronization. The presented scheme is used to investigate the generalized-type synchronization of the 4D hyperchaotic oscillator and the hyperchaotic oscillator with gyrators. Numerical simulations are used to verify the effectiveness of the proposed scheme. The scheme is more powerful than the scalar signal scheme due to Grassi and Mascolo.  相似文献   

10.
In this paper, using scalar feedback controller and stability theory of fractional-order systems, a generalized synchronization method for different fractional-order chaotic systems is established. Simulation results show the effectiveness of the theoretical results.  相似文献   

11.
In this paper, using scalar feedback controller and stability theory of fractional-order systems, a generalized synchronization method for different fractional-order chaotic systems is established. Simulation results show the effectiveness of the theoretical results.  相似文献   

12.
In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.  相似文献   

13.
We explain the functional projective lag synchronization of a hyperchaotic Rössler system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. Based on Lyapunov stability theory, an active control method and adaptive control law are employed to make the states of two hyperchaotic Rössler systems asymptotically synchronized. Finally, some numerical examples are provided to show the effectiveness of our results.  相似文献   

14.
We demonstrate that the projective synchronization can be observed in coupled fractional-order chaotic systems. A new systematic and powerful coupling scheme is developed to investigate the projective synchronization via the open-plus-closed-loop control, which allows us to arbitrarily manipulate the scaling factor of projective synchronization. The proposed scheme is proved analytically on the basis of the stability theorem of the fractional differential equations. Numerical simulations on the fraction-order chaotic Chen system are presented to justify the theoretical analysis.  相似文献   

15.
For efficiency and security of image transmission and storage, the joint image compression and encryption method that performs compression and encryption in a single step is a promising solution due to better security. Moreover, on some important occasions, it is necessary to save images in high quality by lossless compression. Thus, a joint lossless image compression and encryption scheme based on a context-based adaptive lossless image codec (CALIC) and hyperchaotic system is proposed to achieve lossless image encryption and compression simultaneously. Making use of the characteristics of CALIC, four encryption locations are designed to realize joint image compression and encryption: encryption for the predicted values of pixels based on gradient-adjusted prediction (GAP), encryption for the final prediction error, encryption for two lines of pixel values needed by prediction mode and encryption for the entropy coding file. Moreover, a new four-dimensional hyperchaotic system and plaintext-related encryption based on table lookup are all used to enhance the security. The security tests show information entropy, correlation and key sensitivity of the proposed methods reach 7.997, 0.01 and 0.4998, respectively. This indicates that the proposed methods have good security. Meanwhile, compared to original CALIC without security, the proposed methods increase the security and reduce the compression ratio by only 6.3%. The test results indicate that the proposed methods have high security and good lossless compression performance.  相似文献   

16.
The finite-time synchronization (FNTS) problem for a class of delayed fractional-order fully complex-valued dynamic networks (FFCDNs) with internal delay and non-delayed and delayed couplings is studied by directly constructing Lyapunov functions instead of decomposing the original complex-valued networks into two real-valued networks. Firstly, a mixed delay fractional-order mathematical model is established for the first time as fully complex-valued, where the outer coupling matrices of the model are not restricted to be identical, symmetric, or irreducible. Secondly, to overcome the limitation of the use range of a single controller, two delay-dependent controllers are designed based on the complex-valued quadratic norm and the norm composed of its real and imaginary parts’ absolute values, respectively, to improve the synchronization control efficiency. Besides, the relationships between the fractional order of the system, the fractional-order power law, and the settling time (ST) are analyzed. Finally, the feasibility and effectiveness of the control method designed in this paper are verified by numerical simulation.  相似文献   

17.
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.  相似文献   

18.
In this paper, the proportional synchronization between drive system and response system is achieved by using the concept of generalized synchronization. The phase space of all variables in response system can be expanded and compressed flexibly. Meanwhile, the 6-D hyperchaotic chua's circuit is considered as an illustrative example to demonstrate the effectiveness of the proposed approach. Furthermore, focusing on the shortcoming of the long transient behavior during the process of synchronization, a feedback method is adopted to shorten the transitional time of synchronization, which will provide an effective way for speeding up the transmitting velocity of code in chaotic multiple access communication.  相似文献   

19.
Nowadays, it is increasingly necessary to improve the encryption and secure transmission performance of images. Therefore, in this paper, a bit-level permutation algorithm based on hyper chaos is proposed, with a newly constructed 5-D hyperchaotic system combined with DNA sequence encryption to achieve bit-wide permutation of plaintexts. The proposed 5-D hyperchaotic system has good chaotic dynamics, combining hyperchaotic sequence with bit-level permutation to enhance the pseudo-randomness of the plaintext image. We adopt a scheme of decomposing the plaintext color image into three matrices of R, G, and B, and performing block operations on them. The block matrix was DNA encoded, operated, and decoded. The DNA operation was also determined by the hyperchaotic sequence, and finally generated a ciphertext image. The result of the various security analyses prove that the ciphertext images generated by the algorithm have good distribution characteristics, which can not only resist differential attacks, but also have the advantages of large cryptographic space.  相似文献   

20.
Recently, an image encryption algorithm based on random walk and hyperchaotic systems has been proposed. The main idea of the original paper is to scramble the plain image by means of random walk matrix and then to append diffusion. In this paper, the encryption method with security holes is analyzed by chosen plaintext attack. In addition, this paper improves the original encryption algorithm. The experimental and simulation results show that the improved algorithm has the advantages of the original and can improve the ability to resist attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号