首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic potential of nucleation theory is used to describe droplet growth processes in a cloud. Drizzle formation is identified as a statistical barrier-crossing phenomenon that transforms cloud droplets to drizzle size with a rate dependent on turbulent diffusion, droplet collection, and size distribution. Steady-state and transient drizzle rates are calculated for typical cloud conditions. We find drizzle more likely under transient conditions. The model quantifies an important indirect effect of aerosols on climate-drizzle suppression in clouds of higher droplet concentration.  相似文献   

2.
阐述基于Mie散射理论和激光技术而研制的云粒子探测仪的相关问题。利用m量级的小孔光阑模拟感应区域的散射光,并对系统的探测敏感区域面积进行测定;通过使用不同直径的标准粒子对系统进行标定,得到可靠的响应曲线,用于定量测量云粒子尺度谱及粒子数密度。在进行了一系列实验室内的实验之后,将仪器装载在飞机上进行穿云飞行测量实验,表明了该仪器在飞行过程中工作正常、稳定,并且能够即时地显示采样区内云粒子尺度谱分布和数浓度;通过分析探测得到的数据,并与云粒子谱分布进行比较,确认了探测数据有效可靠,反映了该仪器具有良好的测云能力。  相似文献   

3.
宋跃辉  周煜东  王玉峰  李仕春  高飞  李博  华灯鑫 《物理学报》2018,67(24):249201-249201
基于大气物理学研究了水云云滴增长过程中的粒谱及散射特性.研究结果表明,凝结增长使粒谱半高宽和有效半径不断增加,碰并增长使粒谱出现多峰分布,有效半径增加.在凝结增长和碰并增长共同作用下,有效半径的平均增长速率为8 nm/s.凝结增长和碰并增长单独作用下,消光系数和散射系数随时间呈线性变化.在二者共同作用下,除3.2 mm波长外,消光系数和散射系数随时间呈指数增长;1.064, 2.2, 3.7, 12和22μm波长的不对称因子逐渐趋于稳定,200μm的不对称因子呈指数增长,3.2 mm的不对称因子基本保持不变;1.064和2.2μm波长的雷达比在20 sr附近波动,3.7μm波长的雷达比呈大幅振荡.云滴增长过程中,水云在1.064, 2.2和3.7μm波长的单次散射反照率逐渐降低,在12μm, 22μm, 200μm和3.2 mm波长的单次散射反照率逐渐增加,波长指数的绝对值逐渐减小.研究结果可为天气预报、地气辐射平衡研究和遥感数据校正提供重要的参考.  相似文献   

4.
The temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, as well as the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is considered to consist of cold, warm, and hot electrons with temperatures of approximately 0.2 eV, 2 eV, and 10 eV, respectively. It is found that the minor hot electrons escape the cloud; their velocity distribution function shows the typical time-of-flight dispersion feature, i.e. the average drift velocity of the escaping electrons is proportional to the distance from the cloud. The major warm electrons expand along the magnetic field lines with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure that accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, each having its own bipolar electric field. The effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of space experiments on critical ionization velocity  相似文献   

5.
解小宁  刘晓东 《中国物理 B》2010,19(10):109201-109201
From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.  相似文献   

6.
The present work deals with measurements of the droplet size distribution in an ultrasonic atomizer using photographic analysis with an objective of understanding the effect of different equipment parameters such as the operating frequency, power dissipation and the operating parameters such as the flow rate and liquid properties on the droplet size distribution. Mechanistic details about the atomization phenomena have also been established using photographic analysis based on the capture of the growth of the instability and sudden ejection of droplets with high velocity. Velocity of these droplets has been measured by capturing the motion of droplets as streaks. It has been observed that the droplet size decreases with an increase in the frequency of atomizer. Droplet size distribution was found to change from the narrow to wider range with an increase in the intensity of ultrasound. The drop size was found to decrease with an increase in the fluid viscosity. The current work has clearly highlighted the approach for the selection of operating parameters for achieving a desired droplet size distribution using ultrasonic atomization and has also established the controlling mechanisms for the formation of droplet. An empirical correlation for the prediction of the droplet size has been developed based on the liquid and equipment operating properties.  相似文献   

7.
In this paper, we calculate multiply scattered lidar signals with Monte Carlo method for measuring optical depth (extinction coefficient), effective size of water droplets, and liquid water content of clouds, and present algorithms that implement our method. We calculated multiply scattered lidar signals for various water droplet sizes and liquid water contents using a Monte Carlo method. A simple correspondence between water droplet optical depth and the degree of polarization in a modified gamma size distribution (C1 cloud) is found. We also calculated the degree of polarization of a lidar signal for a given liquid water content, finding that the degree of polarization is only dependent on optical depth. Since the Raman lidar signal of liquid water depends on the total volume of the water droplet, the effective radius of the water droplet can thus be recovered from the degree of polarization of the lidar signal and the Raman signal of the liquid water.  相似文献   

8.
Although it has long been recognized that the effects of photon multiple scattering generally need to be accounted for in the analysis of lidar cloud returns, this is a difficult problem and current approaches are still rudimentary. The multiple scattering process is controlled by the size of the lidar beamwidth and the distance to the cloud, which jointly determine the lidar footprint, but cloud microphysical content (i.e., particle size, concentration, and shape) exerts a strong influence on the range distribution and depolarization of the returned energy. Since clouds are inherently inhomogeneous with height, it is our premise that vertically homogeneous cloud simulations based on idealized particle size distributions lead to misleading results. We offer a more realistic approach based on the contents of growing water droplet clouds predicted by a sophisticated adiabatic cloud model, which are offered for use as new standard vertically-inhomogeneous cloud models. Lidar returned signal and depolarization profiles derived from our analytical double-scattering method are given for inter-comparison purposes.Presented at the 7th International Workshop on Multiple Scattering Lidar/Light Experiments (MUSCLE7), July 21–23 1994, Chiba, Japan.  相似文献   

9.
Airborne inhalable particulate in the workplace can represent a significant health hazard, and one of the primary sources of particles is mist produced through the application of cutting fluids in machining operations. The atomization process is one of the principal mechanisms associated with cutting fluid mist formation and generates droplets from fifty to a few thousand micrometers in size. These particles subsequently undergo vaporization and settling effects resulting in an aerosol to which workers may be exposed. While a variety of equipment is available to characterize the fine particulate in the breathing zone, standard equipment to measure the size of the atomized droplets is not available. In this paper, an imaging system is employed to characterize the large droplets produced by atomization in turning. One of the drawbacks of such a system is the time‐consuming experimental calibration procedure that is required to improve the accuracy of the droplet size measurements and extend the depth of field of the imaging system. With this in mind, an approach is introduced to predict droplet diameter based on measurement data without physical system calibration. The relationship between the actual diameter and the measured diameter is established based on an imaging system simulation model that includes a three dimensional point spread function and an image formation relationship grounded in the principles of geometric optics. These two components are combined using convolution integral theory to derive an image intensity profile. The introduction of halo width into the simulation greatly extends the image depth of field, which is a critical factor in capturing more droplets in one image and also minimizing particle size distribution bias towards larger droplets. The model predicts droplet diameter as a function of measured diameter and halo width. Model behavior of predicted diameters from the simulation compares well with those from a physical calibration of the system. The numerical calibration model is then used in the study of cutting fluid atomization in a turning process, and the measured droplet size distribution compares favorably with droplet sizes predicted by a mechanistic atomization model.  相似文献   

10.
Hu Y  Liu Z  Winker D  Vaughan M  Noel V  Bissonnette L  Roy G  McGill M 《Optics letters》2006,31(12):1809-1811
An empirical relationship is derived between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds measured by backscatter lidar. This relationship is shown to hold for clouds having a wide range of extinction coefficients, mean droplet sizes, and droplet size distribution widths. The relationship is also shown to persist for various instrument fields of view and for measurements made within broken cloud fields. The results obtained from the Monte Carlo simulations are verified by using multiple-field-of-view lidar measurements. For space-based lidars equipped to measure linear depolarization ratios, this new relationship can be used to accurately assess signal perturbations due to multiple scattering within nonprecipitating water clouds.  相似文献   

11.
The main stages of the formation of a droplet cloud during the disintegration of water masses (with an initial volume of 0.05–1 L) during their free fall from a great height (up to 15 m) have been determined. High-speed (up to 6 × 105 frames per second) video cameras were used to perform 3D video recording of the transformation and destruction of water mass with the formation of a droplet cloud. It is found that the transverse sizes of the newly formed droplet cloud rapidly increase when the mass passes the first few (up to 10) meters from the onset of falling. It is shown that the maximum cross-sectional areas of the water mass change only slightly with an increase in the discharge height at heights above 10 m. A model of limited growth of the transverse sizes of droplet cloud is developed for the first time based on the results of large-scale experiments.  相似文献   

12.
We describe luminescence imaging experiments that probe the nature of the phonon wind which transports electron-hole droplets in Ge. The participation of non-equilibrium phonons emanating near the excitation region is supported by: (a) sharp features in the droplet spatial distribution (b) a dependence of the average cloud density on the excitation photon energy, and (c) a rapid initial buildup of the cloud.  相似文献   

13.
The phenomenon of droplet clustering or grouping found when a spray of droplets is moving in an oscillating host flow field is investigated for the case of a polydisperse spray that fuels a laminar co-flow diffusion flame. A mathematical solution is developed for the liquid phase based on use of small Stokes numbers for size sections into which the polydisperse spray size distribution is divided. Droplet clustering in the oscillatory flow field is accounted for by constructing a special model for the sectional vaporization Damkohler numbers in accordance with droplet size. Combining this with a formal solution for a gas phase Schvab-Zel'dovich variable yields the means whereby flame dynamics can be described. Results calculated from this solution demonstrate that preferential droplet size behaviour (with smaller droplets tending to cluster to a greater extent and reduce the vaporization Damkohler number more than larger ones) can have a major impact on the flame dynamics through local droplet enrichment with attendant consequences on the production of fuel vapour. The dynamics of the sort of flame (over- or under-ventilated) and the occurrence of flame pinching leading to multiple flame sheets are altered under these circumstances. However, potential control of the actual initial spray polydispersity may reduce the intensity of such effects.  相似文献   

14.
15.
The concept of a pulsed bistatic lidar for measuring water cloud particle size is presented. The method uses a two-color laser and a receiver with a polarization analyzer located at a suitable scattering angle. The dependence of Mie scattering on scattering angle, wavelength, and polarization is used to derive water cloud droplet size. The measurement was simulated for the C1 and C2 clouds, and the technique for determining mode radius was studied. The result shows the lidar system with a two-wavelength laser (1064 nm and 532 nm) and a dual-polarization receiver fixed at a scattering angle of around 178 deg can be used to measure a cloud particle size (mode radius) of 4 to 12 μm. Evaluation of the effect of multiple scattering showed that the method can be applied not only for the measurement at the cloud base but also in the cloud where multiple scattering is not negligible.  相似文献   

16.
Ultrasonic atomization: effect of liquid phase properties   总被引:4,自引:0,他引:4  
Experiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid. The droplet size was found to increase initially with an increase in the viscosity up to a certain threshold viscosity after which the droplet size was found to decrease again. Also droplet size distribution is found to be more compact (uniform sizes) with an increasing viscosity of the atomizing liquid. The presence of the cavitation and its effect on the atomization has been semi quantitatively confirmed using energy balance and by the measurement of the droplet ejection velocities and validated on the basis of the decomposition of the aqueous KI solution. A correlation has been proposed for the prediction of droplet size for aqueous Newtonian fluids and fluids showing non-Newtonian behavior based on the dimensionless numbers incorporating the operating parameters of the ultrasonic atomizer and the liquid phase physico-chemical properties.  相似文献   

17.
岳平  张强  赵文  王劲松  王润元  姚玉壁  王胜  郝小翠  阳伏林  王若安 《物理学报》2013,62(20):209201-209201
地表辐射收支和能量分配对陆-气系统的反馈是气候模式中最重要的物理过程之一. 认识半干旱地区云和降水的扰动对辐射收支和能量分配的影响规律, 是提高数值模式中评估地表辐射收支和能量平衡参数化效果的关键环节. 利用兰州大学半干旱气候与环境观测站2008年的观测资料, 研究了云和降水的扰动对辐射收支各分量的削弱作用及对地表能量平衡的影响规律. 年平均结果表明, 多云状况可以作为年平均的气候背景; 云和降水对短波辐射削弱最强, 大气向下长波辐射随天空云量的增加而增强, 地表向上长波辐射随着云量的增加而减小, 净辐射占总辐射的比率受云和降水的影响较小. 季节平均结果显示, 短波辐射日积分量在生长季和非生长季均随云量的增加而降低, 生长季云和降水对短波辐射的削弱作用明显强于非生长季. 生长季, 晴天、少云和多云时向上长波辐射差异不大, 阴天时向下和向上长波辐射明显减小. 非生长季, 地表向上长波辐射受云和降水的影响较小, 日积分量变化不大, 向下长波辐射随云量的增多而增强. 地表反照率具有明显的日变化和季节变化, 冬季大, 秋季小; 地表反照率日变化呈不对称的“V”形分布. 生长季, 感热通量和土壤热通量随云量增多而减小; 潜热通量在晴天、少云和多云状况下随云量增多而增大; 阴天时受降水影响, 净辐射的严重削弱导致了潜热通量大大降低. 非生长季, 少云时净辐射日积分量最大, 晴天时的净辐射与多云和阴天状况接近; 感热和潜热通量随云量的增多而减小, 土壤热通量日平均积分值在非生长季为负. 生长季, 多云状况的能量闭合度最好, 能量不平衡差额占净辐射的3.9%; 阴天时最差, 不平衡差额占净辐射的16.8%; 晴天和少云状况不平衡差额约占净辐射量的7%. 非生长季受积雪影响, 能量不闭合差额明显大于生长季. 关键词: 半干旱草地 云和降水的扰动 辐射收支 能量平衡  相似文献   

18.
The distribution of sizes and velocities of droplets initially formed in sprays is an important piece of information needed in the spray modelling, because it defines the initial condition of the spray droplets in the predictive calculations of the downstream two‐phase flow fields. A predictive model for the initial droplet size and velocity distributions in sprays is formulated in this study. The present model incorporates both the deterministic and the stochastic aspect of spray formation process. The deterministic aspect takes into account of the unstable wave motion before the liquid bulk breakup through the linear and nonlinear instability analysis, which provides information for the liquid bulk breakup length, the mass‐mean diameter and a prior distribution for the droplet sizes corresponding to the unstable wave growth of various wavelengths. The stochastic aspect deals with the final stage of droplet formation after the liquid bulk breakup by statistical means through the maximum entropy principle based on Bayesian entropy. The two sub‐models are coupled together by the various source terms signifying the liquid‐gas interaction, the mass mean diameter and the prior distribution based on the instability analysis. The initial droplet size and velocity distributions are measured experimentally by phase‐Doppler interferometry for sprays generated by a planar research nozzle and a practical gas turbine airblast nozzle. For the two nozzles, the liquid bulk sheet is formed before its breakup in a coflowing air stream. It is found that the model predictions are in satisfactory agreement with the experimental data for all the cases measured. Hence the present model may be applied to a variety of practical sprays to specify the initial conditions for the spray droplets formed in practical spray systems.  相似文献   

19.
Large-eddy simulation of evaporating spray in a coaxial combustor   总被引:1,自引:0,他引:1  
Large-eddy simulation of an evaporating isopropyl alcohol spray in a coaxial combustor is performed. The Favre-averaged, variable density, low-Mach number Navier-Stokes equations are solved on unstructured grids with dynamic subgrid scale model to compute the turbulent gas-phase. The original incompressible flow algorithm for LES on unstructured grids by [Mahesh et al., J. Comp. Phys. 197 (2004) 215–240] is extended to include density variations and droplet evaporation. An efficient particle-tracking scheme on unstructured meshes is developed to compute the dispersed phase. Experimentally measured droplet size distribution and size-velocity correlation near the nozzle exit are used as the inlet conditions for the spray. The predictive capability of the LES approach on unstructured grids together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail. The mean and turbulent quantities for the gas and particle phases are compared to experimental data to show good agreement. It is shown that for low evaporation rates considered in the present study, a well resolved large-eddy simulation together with simple subgrid models for droplet evaporation and motion provides good agreement of the mean and turbulent quantities for the gas and droplet phases compared to the experimental data. This work represents an important first step to assess the predictive capability of the unstructured grid LES approach applied to spray vaporization. The novelty of the results presented is that they establish a baseline fidelity in the ability to simulate complex flows on unstructured grids at conditions representative of gas-turbine combustors.  相似文献   

20.
液滴不对称分裂是获得不同尺寸微液滴的优选方法,研究液滴不对称分裂行为对于生物医学、能源化工及食品工程等领域具有重要意义.本文研制T型微通道芯片并设计搭建T型微通道液滴半阻塞不对称分裂行为可视化实验平台,研究流量调控对微液滴分裂比的影响规律,并建立理论模型对分裂比进行预测,得到以下结论:液滴不对称挤压分裂过程分为挤压前期、挤压后期和快速夹断阶段,在挤压前期,液滴颈部宽度随时间呈线性变化,在挤压后期,颈部宽度随时间呈指数关系,而在快速夹断阶段,液滴颈部向心收缩的界面附加压力占主导,液滴颈部宽度剧烈收缩,呈断崖式减小;调控分支通道流量可对液滴不对称分裂比进行调控,且调控作用受毛细数影响较大;基于液液流动压降模型的液滴分裂比预测模型能够有效预测液滴分裂比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号