首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Organic–inorganic hybrid sample [N(C4H9)4]2Cu2Cl6 was prepared via the reaction between copper chloride and tetrabutylammonium chloride. The compound was characterized by X-ray powder diffraction, IR, Raman, differential scanning calorimetry (DSC), DTA-TGA analysis and electrical impedance spectroscopy. DSC studies indicate a presence of one-phase transition at 343 K. The complex impedance of compound [N(C4H9)4]2Cu2Cl6 have been investigated in temperature and frequency ranges 300–380 K and 200 Hz–5 MHz, respectively. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The frequency dependence of the conductivity is interpreted in term of Jonscher's law: s(w) = sdc + Awn \sigma (\omega ){ } = {\sigma_{\rm{dc}}} + { }A{\omega^n} . The conductivity follows the Arrhenius relation. The variation of the value of these elements with temperatures confirmed the availability of the phase transition at 343 K detected by DSC and electrical measurements.  相似文献   

2.
The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function f( \textt ) = exp( - \textt/t )b \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } . The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: s( w) = s\textdc + \textAwn \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} . The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.  相似文献   

3.
We report on electrical relaxation measurements of (1 − x)NH4H2PO4-xTiO2 (x = 0.1) composites by admittance spectroscopy, in the 40-Hz–5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, σ’, shows a power-law frequency dependence below 523 K, which is well described by Jonscher’s expression , where σ 0 is the dc conductivity, ω p /2π = f p is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both σ 0 and f p are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Ω cm) − 1 above 543 K.  相似文献   

4.
The effect of Ga doping on the temperature dependences (5 K ≤ T ≤ 300 K) of the Seebeck coefficient α, electrical conductivity σ, thermal conductivity coefficient κ, and thermoelectric figure of merit Z of p-(Bi0.5Sb0.5)2Te3 single crystals has been investigated. It has been shown that, upon Ga doping, the hole concentration decreases, the Seebeck coefficient increases, the electrical conductivity decreases, and the thermoelectric figure of merit increases. The observed variations in the Seebeck coefficient cannot be completely explained by the decrease in the hole concentration and indicate a noticeable variation in the density of states due to the Ga doping.  相似文献   

5.
A proton-conducting polymer electrolyte based on starch and ammonium nitrate (NH4NO3) has been prepared through solution casting method. Ionic conductivity for the system was conducted over a wide range of frequency between 50 Hz and 1 MHz and at temperatures between 303 K and 373 K. Impedance analysis shows that sample with 25 wt.% NH4NO3 has a smaller bulk resistance (R b) compared to that of the pure sample. The amount of NH4NO3 was found to influence the proton conduction; the highest obtainable room temperature conductivity was 2.83 × 10−5 S cm−1, while at 100 °C, the conductivity in found to be 2.09 × 10−4 S cm−1. The dielectric analysis demonstrates a non-Debye behavior. Transport parameters of the samples were calculated using the Rice and Roth model and thus shows that the increase in conductivity is due to the increase in the number of mobile ions.  相似文献   

6.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound has been synthesized by a solution-based chemical method. The X-ray diffraction study at room temperature revealed an orthorhombic system with P21212 space group. The complex impedance has been investigated in the temperature and frequency ranges 420–520 K and 200 Hz–5 MHz, respectively. The grain interior and grain boundary contribution to the electrical response in the material have been identified. Dielectric data were analyzed using the complex electrical modulus M * for the sample at various temperature. The modulus plots can be characterized by full width at half height or in terms of a non-exponential decay function ϕ(t) = exp[(−t/τ) β ]. The detailed conductivity study indicated that the electrical conduction in the material is a thermally activated process. The variation of the AC conductivity with frequency at different temperatures obeys the Almond and West universal law.  相似文献   

7.
The AC conductivity of the LiCaPO4 compound has been measured in the temperature range 634–755 K and the frequency range 300 Hz–5 MHz. The impedance data were fitted to an equivalent circuit consisting of series combination of grains, grains boundary, and electrode elements. Dielectric data were analyzed using complex electrical modulus M* at various temperatures. The modulus plots are characterized by the presence of two relaxation peaks thermally activated. The activation energies obtained from the analysis of M″ (0.90 eV) and conductivity data (0.94 eV) are very close, revealing an ionic hopping mechanism.  相似文献   

8.
A new proton-conductive membrane (PCM) based on poly (vinyl alcohol) and ammonium sulfate (NH4)2SO4 complexed with sulfuric acid and plasticized with ethylene carbonate (EC) at different weight percent were prepared by casting technique. The structural properties of these electrolyte films were examined by XRD studies. The XRD patterns of all the prepared polymer electrolytes reveal the amorphous nature of the films. ac conductivity and dielectric spectra of the electrolyte were studied with changing EC content from weight 0.00 to 0.75 g. A maximum conductivity of 7.3 × 10−5 S cm−1 has been achieved at ambient temperature for PCM containing 0.25 g of ethylene carbonate. The electrical conductivity σ, dielectric constant ε′ and dielectric loss ε″ of PCM in frequency range (100 Hz to 100 KHz), and temperature range (300–400 K) were carried out. Measurement of transference number was carried out to investigate the nature of charge transport in these polymer electrolyte films using Wagner’s polarization technique. Transport number data showed that the charge transport in these polymer electrolyte systems was predominantly due to ions. The electrolyte with the highest electrical conductivity was used in the fabrication of a solid-state electrochemical cell with the configuration (Mg/PCM/PbO2). Various cell parameters ldensity, and current density were determined. The fabricated cells gave capacity of 650 μAh and have an internal resistance of 11.6 kΩ.  相似文献   

9.
Solid polymer electrolytes (SPE) based on poly-(vinyl alcohol) (PVA)0.7 and sodium iodide (NaI)0.3 complexed with sulfuric acid (SA) at different concentrations were prepared using solution casting technique. The structural properties of these electrolyte films were examined by X-ray diffraction (XRD) studies. The XRD data revealed that sulfuric acid disrupt the semi-crystalline nature of (PVA)0.7(NaI)0.3 and convert it into an amorphous phase. The proton conductivity and impedance of the electrolyte were studied with changing sulfuric acid concentration from 0 to 5.1 mol/liter (M). The highest conductivity of (PVA)0.7(NaI)0.3 matrix at room temperature was 10−5 S cm−1 and this increased to 10−3 S cm−1 with doping by 5.1 M sulfuric acid. The electrical conductivity (σ) and dielectric permittivity (ε′) of the solid polymer electrolyte in frequency range (500 Hz–1 MHz) and temperature range (300–400) K were carried out. The electrolyte with the highest electrical conductivity was used in the fabrication of a sodium battery with the configuration Na/SPE/MnO2. The fabricated cells give open circuit voltage of 3.34 V and have an internal resistance of 4.5 kΩ.  相似文献   

10.
The effect of gallium on the temperature dependences (5 K ≤ T ≤ 300 K) of Seebeck coefficient α, electrical conductivity σ, thermal conductivity k, and thermoelectric efficiency Z of mixed p-(Bi0.5Sb0.5)2Te3 semiconductor single crystals is studied. The hole concentration decreases upon gallium doping; that is, gallium causes a donor effect. The Seebeck coefficient increases anomalously, i.e., much higher than it should be at the detected decrease in the hole concentration. This leads to an enhancement of the thermoelectric power. The observed changes in the Seebeck coefficient indicate a noticeable gallium-induced change in the density of states in the valence band.  相似文献   

11.
Electrical complex ac conductivity of the compound Li0.9[Ni1/3Mn1/3Co1/3]O1.95 has been studied in the frequency range 10 Hz–2 MHz and in the temperature range 93–373 K. It has been observed that the frequency dependence of the ac conductivity obeys a power law and the temperature dependence of the ac conductivity is quite weak. The experimental data have been analyzed in the framework of several theoretical models based on quantum mechanical tunneling and classical hopping over barriers. It has been observed that the electron tunneling is dominant in the temperature range from 93 K to 193 K. A crossover of relaxation mechanism from electron tunneling to polaron tunneling is observed at 193 K. Out of the several models discussed, the electron tunneling and the polaron tunneling models are quite consistent with the experimental data for the complex ac conductivity. The various parameters obtained from the fits of the experimental results for the real and imaginary parts of the conductivity to the predictions of these models are quite reasonable.  相似文献   

12.
N. Hannachi  K. Guidara  F. Hlel 《Ionics》2011,17(5):463-471
The Ac electrical conductivity and the dielectric relaxation properties of the [(C3H7)4N]2Cd2Cl6 polycrystalline sample have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 209 Hz–5 MHz and 361–418 K, respectively. The purpose is to make a difference between the electrical and dielectric properties of the polycrystalline sample and single crystal. Besides, a detailed analysis of the impedance spectrum suggests that the electrical properties of the material are strongly temperature-dependent. Plots of (Z" versus Z') are well fitted to an equivalent circuit model consisting of a series combination of grains and grains boundary elements. Moreover, the temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law and the frequency dependence of σ (ω) follows the Jonscher’s universal dynamic law. Furthermore, the modulus plots can be characterized by full width at half height or in terms of a nonexperiential decay function φ(t) = exp(t/t)β. Finally, the imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism.  相似文献   

13.
SrZr1−x Y x O3 coatings were co-sputtered from metallic Zr–Y (84–16 at.%) and Sr targets in the presence of a reactive argon–oxygen gas mixture. The structural and chemical features of the film have been assessed by X-ray diffraction and scanning electron microscopy. The electrical properties have been investigated for different substrates by Complex Impedance Spectroscopy as a function of crystalline state, temperature and atmosphere. The as-deposited coatings are amorphous and crystallise after annealing at 673 K for 2 h under air. The stabilisation of the perovskite structure is a function of the nominal composition. The films are dense and present a good adhesion on different substrates. Crystallisation and mechanical stresses are detected by alternating current (AC) impedance spectroscopy. Significant ionic conductivity in the 473–823 K temperature range is evidenced in air. Two different conduction regimes in the presence of steam are attributed to a modification of the charge carrier nature. In spite of low conductivity values (σ ~10−6 S.cm−1 at 881 K), the activation energies are in agreement with that of Y-doped strontium zirconate ceramics (~0.7 eV in air).  相似文献   

14.
The dielectric constant and the electrical conductivity of the transparent glasses in the composition 3Na2O-7B2O3 (NBO) were investigated in the 100 Hz–10 MHz frequency range at various temperatures. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 0.76 ± 0.02 eV, close to that (0.74 ± 0.02 eV) obtained from DC conductivity studies. The frequency-dependent electrical conductivity was analyzed using Jonscher’s power law. Temperature-dependent behavior of the frequency exponent (n) suggested that the correlated-barrier hopping model was the most appropriate to rationalize the electrical transport phenomenon in NBO glasses.  相似文献   

15.
In the present paper, the ionic conductivity and the dielectric relaxation properties on the poly(vinyl alcohol)-CF3COONH4 polymer system have been investigated by means of impedance spectroscopy measurements over wide ranges of frequencies and temperatures. The electrolyte samples were prepared by solution casting technique. The temperature dependence of the sample’s conductivity was modeled by Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The highest conductivity of the electrolyte of 3.41×10 − 3 (Ωcm) − 1 was obtained at 423 K. For these polymer system two relaxation processes are revealed in the frequency range and temperature interval of the measurements. One is the glass transition relaxation (α-relaxation) of the amorphous region at about 353 K and the other is the relaxation associated with the crystalline region at about 423 K. Dielectric relaxation has been studied using the complex electric modulus formalism. It has been observed that the conductivity relaxation in this polymer system is highly non-exponential. From the electric modulus formalism, it is concluded that the electrical relaxation mechanism is independent of temperature for the two relaxation processes, but is dependent on composition.  相似文献   

16.
Indium-filled skutterudites with nominal compositions of In x Co4Sb12 (x=0,0.1,0.2,0.3) were prepared by combining solvothermal synthesis and melting. The bulk samples were characterized by X-ray diffraction and scanning electron microscopy, respectively. The Seebeck coefficient, electrical conductivity, and thermal conductivity were measured from room temperature up to ∼773 K. Hall effect measurements were performed at room temperature. The thermoelectric properties of the samples were significantly influenced by filling In into CoSb3. The dimensionless thermoelectric figure of merit, ZT, increased with increasing temperature and reached a maximum value of ∼0.79 for In0.1Co4Sb12 at 573 K.  相似文献   

17.
Synthesis, crystal structure, and dielectric properties of [C6H4(NH3)2]2ClBiCl6.H2O are reported. The compound crystallizes in the monoclinic system with space group P21/n. The unit cell dimensions are a = 9.836(5), b = 19.582(5), c = 13.082(5) ?, β = 104.731(5)° with Z = 4. The atomic arrangement can be described by an alternation of organic and inorganic layers. The anionic layer is built up of octahedral of [BiCl6]3- arranged in sandwich between the organic layers. The crystal packing is governed by means of the ionic N–H···Cl hydrogen bonds, forming a three-dimensional network. The dielectric properties have been investigated at temperature range from 297 to 410 K at various frequencies (10 Hz–100 kHz). Dielectric studies were performed to confirm results obtained with thermal analysis. The evolution of dielectric constant as a function of temperature and frequency of single crystal has been investigated in order to determine some related parameters.  相似文献   

18.
The complex conductivity of La2CuO4+δ has been investigated for frequencies 20 Hz≤ν≤4 GHz and temperatures 1.5K≤T≤450 K. Two single crystals with δ≈0 and δ≈0.02 were investigated, using dc (four-probe), reflectometric and contact-free techniques. At high temperatures the dc conductivity is thermally activated with low values of the activation energy. For low temperatures Mott's variable range hopping dominates. The real and imaginary parts of the ac conductivity follow a power-law dependence σ∼v s, typical for charge transport by hopping processes. A careful analysis of the temperature dependence of the ac conductivity and of the frequency exponents has been performed. It is not possible to explain all aspects of the ac conductivity in La2CuO4+δ by standart hopping models. However, the observed minimum in the temperature dependence of the frequency exponents strongly suggests tunneling of large polarons as dominant transport process.  相似文献   

19.
Thin film of CaCu3Ti4O12 (CCTO) has been deposited on Nb-doped SrTiO3(100) single crystal using pulsed laser deposition. The dielectric constant and AC conductivity of CCTO film in the metal–insulator–metal capacitor configuration over a wide temperature (80 to 500 K) and frequency (100 Hz to 1 MHz) range have been measured. The small dielectric dispersion with frequency observed in the lower temperature region (<300 K) indicates the presence of small defects in the deposited CCTO thin film. The frequency-dependent AC conductivity at lower temperature indicates the hopping conduction. The dielectric dispersion data has been analyzed in the light of both conductivity relaxation and Debye type relaxation with a distribution of relaxation times. Origin of dielectric dispersion is attributed to the distribution of barrier heights such that some charge carriers are confined between long-range potential wells associated with defects and give rise to dipolar polarization, while those carriers which do not encounter long-range potential well give rise to DC conductivity.  相似文献   

20.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号