首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
A single sandpile model with quenched random toppling matrices captures the crucial features of different models of self-organized criticality. With symmetric matrices avalanche statistics falls in the multiscaling Bak-Tang-Wiesenfeld universality class. In the asymmetric case the simple scaling of the Manna model is observed. The presence or absence of a precise toppling balance between the amount of sand released by a toppling site and the total quantity the same site receives when all its neighbors topple once determines the appropriate universality class.  相似文献   

2.
The avalanche statistics in a stochastic sandpile model where toppling takes place with a probability p is investigated. The limiting case p=1 corresponds to the Bak-Tang-Wiesenfeld (BTW) model with a deterministic toppling rule. Based on the moment analysis of the distribution of avalanche sizes we conclude that for 0相似文献   

3.
We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.  相似文献   

4.
Critical properties of external perimeters of islands that appear at the flooding transition in the toppling surfaces, defined by the toppling number SiSi of each sand column, of stochastic and rotational sandpile models are studied. A set of new critical exponents are estimated by extensive numerical simulation and finite size scaling analysis. The values of the critical exponents are found different for these sandpile models. Several scaling relations among the critical exponents and the Hurst exponent describing the self-affinity of the toppling surfaces are established and verified. The critical exponents obtained here are also found connected to the exponents describing the avalanche size distribution.  相似文献   

5.
We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.  相似文献   

6.
By computer simulations, it was reported that the Bak-Tang-Wiesenfeld (BTW) model loses self-organized criticality (SOC) when some particles are annihilated in a toppling process in the bulk of system. We give a rigorous proof that the BTW model loses SOC as soon as the annihilation rate becomes positive. To prove this, a nonconservative Abelian sandpile model is defined on a square lattice, which has a parameter alpha (>/=1) representing the degree of breaking of the conservation law. This model is reduced to be the BTW model when alpha=1. By calculating the average number of topplings in an avalanche exactly, it is shown that for any alpha>1, with an exponent 1 as alpha-->1 gives a scaling relation 2nu(2-a)=1 for the critical exponents nu and a of the distribution function of T. The 1-1 height correlation C11(r) is also calculated analytically and we show that C11(r) is bounded by an exponential function when alpha>1, although C11(r) approximately r(-2d) was proved by Majumdar and Dhar for the d-dimensional BTW model. A critical exponent nu(11) characterizing the divergence of the correlation length xi as alpha-->1 is defined as xi approximately |alpha-1|(-nu(11)) and our result gives an upper bound nu(11)相似文献   

7.
Anomalous scaling in the Zhang model   总被引:2,自引:0,他引:2  
We apply the moment analysis technique to analyze large scale simulations of the Zhang sandpile model. We find that this model shows different scaling behavior depending on the update mechanism used. With the standard parallel updating, the Zhang model violates the finite-size scaling hypothesis, and it also appears to be incompatible with the more general multifractal scaling form. This makes impossible its affiliation to any one of the known universality classes of sandpile models. With sequential updating, it shows scaling for the size and area distribution. The introduction of stochasticity into the toppling rules of the parallel Zhang model leads to a scaling behavior compatible with the Manna universality class. Received 8 August 2000 and Received in final form 4 October 2000  相似文献   

8.
We study sandpile models with stochastic toppling rules and having sticky grains so that with a nonzero probability no toppling occurs, even if the local height of pile exceeds the threshold value. Dissipation is introduced by adding a small probability of particle loss at each toppling. Generically for the models with a preferred direction, the avalanche exponents are those of critical directed percolation clusters. For undirected models, avalanche exponents are those of directed percolation clusters in one higher dimension.  相似文献   

9.
We numerically investigate the quenched random directed sandpile models which are local, conservative and Abelian. A local flow balance between the outflow of grains during a single toppling at a site and the total number of grains flowing into the same site plays an important role when all the nearest-neighbouring sites of the above-mentioned site topple for once. The quenched model has the same critical exponents with the Abelian deterministic directed sandpile model when the local flow balance exists, otherwise the critical exponents of this quenched model and the annealed Abelian random directed sandpile model are the same. These results indicate that the presence or absence of this local flow balance determines the universality class of the Abelian directed sandpile model.  相似文献   

10.
《Physica A》2006,363(2):299-306
We study the distributions of dissipative and nondissipative avalanches separately in the stochastic Zhang (SP-Z) sandpile in two dimension. We find that dissipative and nondissipative avalanches obey simple power laws and do not have the logarithmic correction, while the avalanche distributions in the Abelian Manna model should include a logarithmic correction. We use the moment analysis to determine the numerical critical exponents of dissipative and nondissipative avalanches, respectively, and find that they are different from the corresponding values in the Abelian Manna model. All these indicate that the stochastic Zhang model and the Abelian Manna model belong to distinct universality classes, which imply that the Abelian symmetry breaking changes the scaling behavior of the avalanches in the case of the stochastic sandpile model.  相似文献   

11.
We study diffusion of particles in large-scale simulations of one-dimensional stochastic sandpiles, in both the restricted and unrestricted versions. The results indicate that the diffusion constant scales in the same manner as the activity density, so that it represents an alternative definition of an order parameter. The critical behavior of the unrestricted sandpile is very similar to that of its restricted counterpart, including the fact that a data collapse of the order parameter as a function of the particle density is possible, but with a narrow scaling region. We also develop a series expansion, in inverse powers of the density, for the collective diffusion coefficient in a variant of the stochastic sandpile in which the toppling rate at a site with n particles is n(n-1), and compare the theoretical prediction with simulation results.  相似文献   

12.
Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, successfully reproducing the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up proposing new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.  相似文献   

13.
A new kind of theoretical one-dimensional sandpile model is proposed. In contrast to the models studied previously, the sliding process in this model is assumed to be of stochastic nature. Numerical simulations show that the behavior of this model is apparently closer to the reality of true sandpile than the models considered previously. The universality and sealing of this model is also discussed.  相似文献   

14.
Ya-Ting Lee  Young-Fo Chang 《Physica A》2008,387(21):5263-5270
Reduction in b-values before a large earthquake is a very popular topic for discussion. This study proposes an alternative sandpile model being able to demonstrate reduction in scaling exponents before large events through adaptable long-range connections. The distant connection between two separated cells was introduced in the sandpile model. We found that our modified long-range connective sandpile (LRCS) system repeatedly approaches and retreats from a critical state. When a large avalanche occurs in the LRCS model, accumulated energy dramatically dissipates and the system simultaneously retreats from criticality. The system quickly approaches the critical state accompanied by the increase in the slopes of the power-law frequency-size distributions of events. Afterwards, and most interestingly, the power-law slope declines before the next large event. The precursory b-value reduction before large earthquakes observed from earthquake catalogues closely mimics the evolution in power-law slopes for the frequency-size distributions of events derived in the LRCS models. Our paper, thus, provides a new explanation for declined b-values before large earthquakes.  相似文献   

15.
A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule — when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.  相似文献   

16.
We construct the thermodynamic limit of the stationary measures of the Bak-Tang-Wiesenfeld sandpile model with a dissipative toppling matrix (sand grains may disappear at each toppling). We prove uniqueness and mixing properties of this measure and we obtain an infinite volume ergodic Markov process leaving it invariant. We show how to extend the Dhar formalism of the abelian group of toppling operators to infinite volume in order to obtain a compact abelian group with a unique Haar measure representing the uniform distribution over the recurrent configurations that create finite avalanchesWork partially supported by Tournesol project – nr. T2001.11/03016VF  相似文献   

17.
A directed sandpile automaton is simulated on a triangular lattice. Water droplets on a window pane are argued to be in the same class of universality hence also in a self-organized critical state. Various scaling exponents are obtained. In agreement with experimental results, the power spectrum is shown to be f-2-like instead of f-1-like.  相似文献   

18.
The relationships between the Hurst exponent H and the power-law scaling exponent B in a new modification of sandpile models, i.e. the long-range connective sandpile (LRCS) models, exhibit a strong dependence upon the system size L. As L decreases, the LRCS model can demonstrate a transition from the negative to positive correlations between H- and B-values. While the negative and null correlations are associated with the fractional Gaussian noise and generalized Cauchy processes, respectively, the regime with the positive correlation between the Hurst and power-law scaling exponents may suggest an unknown, interesting class of the stochastic processes.  相似文献   

19.
Two cellular automata models with directed mass flow and internal time scales are studied by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the avalanche lifetime, in model A, and ,in model B. In both cases nonuniversal scaling properties of avalanche distributions are found for , where is related to directed percolation threshold in d=3. Distributions of avalanche durations for are studied in detail, exhibiting multifractal scaling behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined as a function of p. At a phase transition to noncritical steady state occurs. Due to difference in the relaxation mechanisms, avalanche statistics at approaches the parity conserving universality class in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the transition. Received: 29 May 1998 / Revised: 8 September 1998 / Accepted: 10 September 1998  相似文献   

20.
We introduce a sandpile model where, at each unstable site, all grains are transferred randomly to downstream neighbors. The model is local and conservative, but not Abelian. This does not appear to change the universality class for the avalanches in the self-organized critical state. It does, however, introduce long-range spatial correlations within the metastable states. For the transverse direction d(perpendicular)>0, we find a fractal network of occupied sites, whose density vanishes as a power law with distance into the sandpile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号