首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A new model is put forward to bound the effective elastic moduli of composites with ellipsoidal inclusions. In the present paper, transition layer for each ellipsoidal inclusion is introduced to make the trial displacement field for the upper bound and the trial stress field for the lower bound satisfy the continuous interface conditions which are absolutely necessary for the application of variational principles. According to the principles of minimum potential energy and minimum complementary energy, the upper and lower bounds on the effective elastic moduli of composites with ellipsoidal inclusions are rigorously derived. The effects of the distribution and geometric parameters of ellipsoidal inclusions on the bounds of the effective elastic moduli are analyzed in details. The present upper and lower bounds are still finite when the bulk and shear moduli of ellipsoidal inclusions tend to infinity and zero, respectively. It should be mentioned that the present method is simple and needs not calculate the complex integrals of multi-point correlation functions. Meanwhile, the present paper provides an entirely different way to bound the effective elastic moduli of composites with ellipsoidal inclusions, which can be developed to obtain a series of bounds by taking different trial displacement and stress fields.  相似文献   

2.
含夹杂复合材料宏观性能研究   总被引:10,自引:1,他引:10  
吴林志  石志飞 《力学进展》1995,25(3):410-423
本文综述并评价了有关含夹杂复合材料的有效弹性模量研究的代表性工作,包括自洽理论,微分法,Eshelby-Mori-Tanaka法,Hashin和Shtrikman的变分法等。指出上述理论由于没有充分考虑复合材料内部的微结构特征,如夹杂的形状、几何尺寸、分布和夹杂间的相互影响,在夹杂的体积份数较大,如大于0.3时已不能有效地预报复合材料的有效弹性模量,随后介绍了近来才发展起来的一种新方法─—相关函数积分法,理论与实验的结果的比较表明,该方法在夹杂体积份数较大时仍然有效。  相似文献   

3.
In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.   相似文献   

4.
含正交排列夹杂和缺陷材料的等效弹性模量和损伤   总被引:3,自引:0,他引:3  
赵爱红  虞吉林 《力学学报》1999,31(4):475-483
研究含正交排列夹杂和缺陷材料的等效弹性模量和损伤,推导了以Eshelby-Mori-Tanaka方法求解多相各向异性复合材料等效弹性模量的简便计算公式,针对含三相正交椭球状夹杂的正交各向异性材料,得到了由细观参量(夹杂的形状、方位和体积分数)表示的等效弹性模量的解析表达式.在此基础上,提出了一个宏细观结合的正交各向异性损伤模型,从而建立了以细观量为参量的含损伤材料的应力应变关系.最后,对影响材料损伤的细观结构参数进行了分析.  相似文献   

5.
Summary The objective of this paper is to evaluate the averaged elastic properties of 3-D grained composites in which identical inclusions form a prismatic network interacting with the matrix material. The inclusions are of ellipsoidal shape with transverse circular sections located at the nodes of a doubly-periodic lattice with an orthogonal elementary cell. When the arrays of inclusions are set at equal spacings in normal directions through the thickness of the matrix, the material formed is an anisotropic composite with tetragonal symmetry at planes transverse to the fiber axis. The longitudinal and transverse elastic and shear moduli as well as the longitudinal Poisson's ratios of such composites are evaluated in this paper. The averaged properties are studied in terms of the aspect ratio and volume fraction of the inclusions as well as the relative rigidity of the constituent phases. Employing the Eshelby's theory for the stress field around a single ellipsoidal inhomogeneity, which is surrounded by the effective anisotropic material, and considering the Mori-Tanaka's concept for the mutual interaction of the neighboring inclusions, we may evaluate the averaged elastic properties of grained composites with aligned ellipsoidal inclusions at finite concentrations. The results provided in a closed-form solution concern the stiffness of 3-D grained composites with parallely dispersed ellipsoidal inclusions forming a prismatic network inside the principal material. It is shown that the stiffness is affected by both the geometry of the inclusions and their concentration. The use of different composite models in the analysis shows that intense variations of stiffness occur mainly in hard composites weakened by soft ellipsoidal inclusions. These findings come in full verification with experimental or theoretical results from the literature. Received 10 February 1998; accepted for publication 27 November 1998  相似文献   

6.
I.IntroductionWhethertheinterfacesofcompositematerialsareperfectornotwillaffectitsmacromechanicaloreffectivepropertiesimportantly.Butsofar,almostallofthestudiesontheeffectivepropertiesofcompositematerialsarebasedontheassumptionthattheinterfacesareperfectl"2].Infact,thisisnotappropriateforallinterfaces[31.Thusthestudiesonmechanicalpropertyofcompositematerialswithimperfaceintert'acehavebeenconsideredrecentlyinsomeliteratures.Hashin16]hasextendedtheelasticextremumprinciplesofminimumpotentialandm…  相似文献   

7.
From the work of R. Hill on constitutive macro-variables it is known that for an inhomogeneous elastic solid under finite strain an overall elastic constitutive law may be defined. In particular, the volume average of the strain energy of the solid is a function only of the volume-averaged deformation gradient. In view of the importance of this result it is re-derived in this paper as a prelude to a discussion of composite materials. A composite material consisting of a dilute suspension of initially spherical inclusions embedded in a matrix of different material is considered. For second-order isotropic elasticity theory an expression for the overall bulk modulus of the composite material is obtained in terms of the moduli of the constituents. When the inclusions are vacuous a known result for the bulk modulus of porous materials is recovered. In certain situations the strengthening/ weakening effects of the inclusions are less pronounced in the second-order theory than in the linear theory.  相似文献   

8.
We propose an asymptotic approach for evaluating effective elastic properties of two-components periodic composite materials with fibrous inclusions. We start with a nontrivial expansion of the input elastic boundary value problem by ratios of elastic constants. This allows to simplify the governing equations to forms analogous to the transport problem. Then we apply an asymptotic homogenization method, coming from the original problem on a multi-connected domain to a so called cell problem, defined on a characterizing unit cell of the composite. If the inclusions' volume fraction tends to zero, the cell problem is solved by means of a boundary perturbation approach. When on the contrary the inclusions tend to touch each other we use an asymptotic expansion by non-dimensional distance between two neighbouring inclusions. Finally, the obtained “limiting” solutions are matched via two-point Padé approximants. As the results, we derive uniform analytical representations for effective elastic properties. Also local distributions of physical fields may be calculated. In some partial cases the proposed approach gives a possibility to establish a direct analogy between evaluations of effective elastic moduli and transport coefficients. As illustrative examples we consider transversally-orthotropic composite materials with fibres of square cross section and with square checkerboard structure. The obtained results are in good agreement with data of other authors.  相似文献   

9.
含有随机夹杂非均匀体的有效弹性模量   总被引:1,自引:0,他引:1  
在对含有随机夹杂的非均匀体求有效弹性模量时,一般多根据Eshelby的等效夹杂法,但由于该方法没有充分考虑非均匀体内部的微结构,所以其理论具有一定的局限性。本文认为Kunin的微结构理论与Eshelby的等效夹杂法相比更具一般性,因而本文采用了文[9]中一些合理的思想,摒弃了其中不合理的假设,并且建立了一种新的理论模型.最后,本文针对球夹杂的情况给出了非均匀体有效弹性模量依赖于夹杂体积份数的关系,并将该结果与文[10]中的结果进行了比较.  相似文献   

10.
The effective elastoplastic behavior of a two-phase composite consisting of partially debonded elastic inclusions and a ductile matrix is investigated by a homogenization method. The method drew information from a recent study by the authors on the effective elastic moduli of the said composite and from an energy approach suggested by Qui and Weng, J. Appl. Mech., 59, 261 [1992] to address the homogenized plastic state of the heterogeneously deformed ductile matrix. Two types of partial debonding configuration are considered; the first is on the top and bottom of the aligned oblate inclusions and the other is on the lateral surface of the prolate ones, with special reference to spherical inclusions for both types of debonding. The transversely isotropic elastoplastic properties of the partially debonded composite are found to be highly dependent upon the debonding mode and the volume concentration and shape of inclusions. A damage mechanics based on Weibull's statistical function is also proposed to study the progressive partial debonding of the initially bonded composite under pure tension and under biaxial tension, respectively, for these two types of partial debonding. It is found that the interfacial strength, particle concentration, inclusion shape and debonding mode all play significant role in the overall response of the heterogeneous system during the progressive debonding process.  相似文献   

11.
Recently, Cohen and Bergman (Phys. Rev. B 68 (2003a) 24104) applied the method of elastostatic resonances to the three-dimensional problem of nonoverlapping spherical isotropic inclusions arranged in a cubic array in order to calculate the effective elastic moduli. The leading order in this systematic perturbation expansion, which is related to the Clausius-Mossotti approximation of electrostatics, was obtained in the form of simple algebraic expressions for the elastic moduli. Explicit expressions were derived for the case of a simple cubic array of spheres, and comparison was made with some accurate results. Here, we present explicit expressions for the effective elastic moduli of base-centered and face-centered cubic arrays as well, and make a comparison with other estimates and with accurate numerical results. The simple algebraic expressions provide accurate results at low volume fractions of the inclusions and are good estimates at moderate volume fractions even when the contrast is high.  相似文献   

12.
In this work, a modeling of electroelastic composite materials is proposed. The extension of the heterogeneous inclusion problem of Eshelby for elastic to electroelastic behavior is formulated in terms of four interaction tensors related to Eshelby’s electroelastic tensors. Analytical formulations of interaction tensors are presented for ellipsoidal inclusions. These tensors are basically used to derive the self-consistent model, Mori–Tanaka and dilute approaches. Numerical solutions are based on numerical computations of these tensors for various types of inclusions. Using the obtained results, effective electroelastic moduli of piezoelectric multiphase composites are investigated by an iterative procedure in the context of self-consistent scheme. Generalised Mori–Tanaka’s model and dilute approach are re-formulated and the three models are deeply analysed. Concentration tensors corresponding to each model are presented and relationships of effective coefficients are given. Numerical results of effective electroelastic moduli are presented for various types of piezoelectric inclusions and for various orientations and compared to existing experimental and theoretical ones.  相似文献   

13.
A complete analytical solution has been obtained of the elasticity problem for a plane containing periodically distributed, partially debonded circular inclusions, regarded as the representative unit cell model of fibrous composite with interface damage. The displacement solution is written in terms of periodic complex potentials and extends the approach recently developed by Kushch et al. (2010) to the cell type models. By analytical averaging the local strain and stress fields, the exact formulas for the effective transverse elastic moduli have been derived. A series of the test problems have been solved to check an accuracy and numerical efficiency of the method. An effect of interface crack density on the effective elastic moduli of periodic and random structure FRC with interface damage has been evaluated. The developed approach provides a detailed analysis of the progressive debonding phenomenon including the interface cracks cluster formation, overall stiffness reduction and damage-induced anisotropy of the effective elastic moduli of composite.  相似文献   

14.
The present work aims to determine the effective elastic moduli of a composite having a columnar microstructure and made of two cylindrically anisotropic phases perfectly bonded at their interface oscillating quickly and periodically along the circular circumferential direction. To achieve this objective, a two-scale homogenization method is elaborated. First, the micro-to-meso upscaling is carried out by applying an asymptotic analysis, and the zone in which the interface oscillates is correspondingly homogenized as an equivalent interphase whose elastic properties are analytically and exactly determined. Second, the meso-to-macro upscaling is accomplished by using the composite cylinder assemblage model, and closed-form solutions are derived for the effective elastic moduli of the composite. Two important cases in which rough interfaces exhibit comb and saw-tooth profiles are studied in detail. The analytical results given by the two-scale homogenization procedure are shown to agree well with the numerical ones provided by the finite element method and to verify the universal relations existing between the effective elastic moduli of a two-phase columnar composite.  相似文献   

15.
A model is presented of a particulate composite containing spherical inclusions, each of which are surrounded by a localized region in which the elastic moduli vary smoothly with radius. This region may represent an interphase zone in a composite, or the transition zone around an aggregate particle in concrete, for example. An exact solution is derived for the displacements and stresses around a single inclusion in an infinite matrix, subjected to a far-field hydrostatic compression, and is then used to derive an approximate expression for the effective bulk modulus of a material containing a random dispersion of these inclusions. The analogous conductivity (thermal, electrical, etc.) problem is then discussed, and it is shown that the expression for the normalized effective conductivity corresponds exactly to that for the normalized effective bulk modulus, if the Poisson ratios of both phases are set to zero.  相似文献   

16.
A mixed analytical-numerical (boundary element method) procedure is presented for estimating the effective elastic moduli of a two-phase periodic composite by application of a unit cell. The two-phase composite consists of a metal/polymer matrix and one/three circular ceramic inclusions with adhesive and partial debonding of the interface. The results are displayed numerically with special attention given to development of plastic zones as debonding occurs. Dependence of load-time history is exhibited.  相似文献   

17.
The obvious shortcoming of the generalized self-consistent method (GSCM) is that the effective shear modulus of composite materials estimated by the method can not be expressed in an explicit form. This is inconvenient in engineering applications. In order to overcome that shortcoming of GSCM, a reformation of GSCM is made and a new micromechanical scheme is suggested in this paper. By means of this new scheme, both the effective bulk and shear moduli of an inclusion-matrix composite material can be obtained and be expressed in simple explicit forms. A comparison with the existing models and the rigorous Hashin-Shtrikman bounds demonstrates that the present scheme is accurate. By a two-step homogenization technique from the present new scheme, the effective moduli of the composite materials with coated spherical inclusions are obtained and can also be expressed in an explicit form. The comparison with the existing theoretical and experimental results shows that the present solutions are satisfactory. Moreover, a quantitative comparison of GSCM and the Mori-Tanaka method (MTM) is made based on a unified scheme. The project supported by the National Natural Science Foundation of China under the Contract NO. 19632030 and 19572008, and China Postdoctoral Science Foundation  相似文献   

18.
We study the macroscopic mechanical behavior of materials with microscopic holes or hard inclusions. Specifically, we deal with the effective elastic moduli of composites whose microgeometry consists of either soft or hard isolated inclusions surrounded by an elastic matrix. We approach this problem by taking the stiffness of the inclusion phase to be a complex variable, which we eventually evaluate at the soft or hard limits. Our main result states that there is a certain class of non-physical, negative-definite values of the elastic moduli of the inclusion phase for which the effective tensor does not have infinities or become otherwise singular.We present applications of this result to the estimation of effective moduli and to homogenization theorems. The first application involves using complexanalytic methods to obtain rigorous and accurate bounds on the effective moduli of the high-contrast composites under consideration. We also discuss the variational estimates of Rubenfeld & Keller, which yield a complementary set of bounds on these moduli. The best bounds are given by a combination of the analytical and variational results. As a second application, we show that certain known theorems of homogenization for materials with holes are simple consequences of our main result, and in this connection we establish corresponding new theorems for materials with hard inclusions. While our rederivation of the homogenization theorems for materials with holes can be closely related to other known constructions, it appears that certain elements provided by our main result are essential in the proof of homogenization for the hard-inclusion case.  相似文献   

19.
The influences of interfacial tension and compressibility to the linear viscoelastic properties of nanocomposite and nanoporous materials are considered theoretically. The effective bulk and shear moduli of the systems are calculated within the generalized composite sphere model which takes into account the effect of interfacial tension. It is found that frequency dependence of the effective dynamic shear and bulk moduli of nanocomposites with the compressible elastic matrix and viscous inclusions may be represented in terms of the Zener model comprising of the viscoelastic Kelvin element in series with the elastic spring. The relations of the Zener model parameters with the material characteristics are revealed. The physical interpretation of the frequency behavior of the dynamic shear and bulk moduli against the interfacial tension, component compressibility, viscosity, and inclusion volume fraction is discussed. Victor G. Oshmyan deceased.  相似文献   

20.
Expressions are derived for the rates of change of the S and P tensors for transformed homogeneous inclusions in an anisotropic comparison medium undergoing prescribed changes of its elastic moduli. General results are obtained for ellipsoids and then reduced to yield explicit expressions in terms of the Stroh eigenvalues for cylindrical and disk-shaped inclusions in anisotropic solids and for spherical inclusions in isotropic solids. Applications are illustrated by solving the rate problem for an inhomogeneity in a large volume of a comparison medium, which is shown to be readily adaptable to standard averaging techniques for predictions of rates of change of overall moduli of composite materials experiencing evolution of phase moduli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号