首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to characterize the differences in electrophoretic behavior between linear and branched PEG‐conjugated proteins. Human growth hormone and alpha‐lactalbumin modified by linear or branched PEGs with molecular weight of 10 kDa were analyzed by SEC, MALDI‐TOF MS, SDS‐PAGE, and microchip CGE (MCGE). Chromatographic and mass spectrometric differences between the linear and branched PEG‐proteins on SEC and MALDI‐TOF MS were small, but their electrophoretic behaviors on SDS‐PAGE and MCGE were significantly different. In particular, MCGE showed significant differences in the peak width and the migration times of linear and branched PEG‐proteins, in which the branched PEG‐proteins exhibited a narrower peak and longer migration time than the linear PEG‐proteins. This phenomenon may explain the longer circulation half‐life for the branched PEG‐proteins observed in previously reported in vivo studies. Consequently, this study indicates that MCGE may be a valuable tool for differentiating linear and branched PEG‐proteins.  相似文献   

2.
Amino acid N‐thiocarboxyanhydride (NTA), the thioanalog of N‐carboxyanhydride (NCA), is much more stable than NCA against moisture and heat. The convenient monomer synthesis without rigorous anhydrous requirements makes the ring‐opening polymerization of NTA a competitive alternative to prepare polypeptoid‐containing materials with potential of large‐scale production. Polysarcosines (PSars) with high yields (>90%) and low polydispersities (<1.2) are synthesized from sarcosine N‐thiocarboxyanhydride (Sar‐NTA) at 60 °C initiated by primary amines including poly(ethylene glycol) amine (PEG–NH2). The lengths of PSar segments are controlled by various feed ratios of Sar‐NTA to initiator. PEG‐b‐PSar products, a class of novel double‐hydrophilic diblock copolymers, are effective in stabilizing oil‐in‐water emulsions at nano‐ and microscale, which demonstrates promising encapsulation applications in food, cosmetics, and drug delivery. Due to the different solubility of PEG and PSar blocks, PEG‐b‐PSar copolymers form micelles in organic solvents with the capability to incorporate metal cations including Cu2+ and Ni2+.

  相似文献   


3.
Gel formation was discovered in an aqueous mixture of enantiomeric triblock copolymers, PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA. This system is characteristic in that an interesting sol–gel transition was induced by the stereo‐complexation of the PLLA and PDLA segments of the block copolymers around 37°C. The process of gel formation was clearly monitored by the rheological change, and the responsibility of the stereo‐complex formation for the gelation was confirmed by wide‐angle X‐ray scattering. The mechanism of this gel formation is discussed in relation to its potential applications.  相似文献   

4.
Nanoparticles formed from amphiphilic block copolymers can be used as drug delivery vehicles for hydrophilic therapeutics. Poly(ethylene glycol) (PEG)‐peptide copolymers were investigated for their self‐assembling properties and as consequent potential delivery systems. Mono‐ and dihydroxy PEGs were functionalized with a pentavaline sequence bearing Fmoc end groups. The molecular weight of the PEG component was varied to evaluate copolymer size and block number. These di‐ and tri‐block copolymers readily self‐assemble in aqueous solution with critical aggregation concentrations (CACs) of 0.46–16.29 μM. At concentrations above the CAC, copolymer solutions form spherical assemblies. Dynamic light scattering studies indicate these aggregates have a broad size distribution, with average diameters between 33 and 127 nm. The copolymers are comprised β‐conformations that are stable up to 80 °C, as observed by circular dichroism. This peptide secondary structure is retained in solutions up to 50% MeOH as well. The triblock copolymers proved to be the most stable, with copolymers synthesized from 10 kDa PEG having the most stable particles. Loading of carboxyfluorescein at 2–5 mol % shows that these copolymers have the potential to encapsulate hydrophilic drugs for delivery applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Interactive materials being responsive to a biocompatible stimulus represent a promising approach for future therapeutic applications. In this study, we present a novel biohybrid material synthesized from biocompatible components being stimulus‐responsive to the pharmaceutically approved small‐molecule novobiocin. The hydrogel design is based on the gyrase B (GyrB) protein, which is covalently grafted to multi‐arm polyethylene glycol (PEG) using a Michael‐type addition reaction. Upon addition of the GyrB‐dimerizing substance coumermycin, stable hydrogels form which can be dissolved in a dose‐adjustable manner by the antibiotic novobiocin. The switchable properties of this PEG‐based hydrogel are favorable for future applications in tissue engineering and as externally controlled drug depot.  相似文献   

6.
7.
8.
Biodegradable hydrogels were synthesized by the click reaction of 4‐arm azido‐terminated PEG differing in molecular weight (2 100 and 8 800) and two alkyne‐terminated peptides: [alkyne]‐GFLGK‐[alkyne] and ([alkyne]‐GFLG)2K. The physical properties of in situ formed hydrogels were examined. The hydrogels were highly elastic as determined by rheological and microrheological studies. Swelling degree and enzymatic degradation by papain were dependent on the molecular weight of the PEG, but not the peptide. For PEG8800‐based hydrogels, time‐course analysis of degradation showed that the molecular weight of the soluble fraction quickly reached the PEG precursor value. These findings may guide future design of hydrogels with controllable mechanical properties and enzymatic degradability.

  相似文献   


9.
To great (monodisperse) lengths : An improved synthesis of purer ethylene glycol (EG) oligomers allows access to 16‐ and 32‐mers pure enough for multiple incorporation, and also to the longest (48‐mer) discrete EG oligomer yet reported. The high purity enables the first crystallizations and hence the first glimpses of secondary 310‐helical PEG structures.

  相似文献   


10.
Novel temperature and pH dual‐responsive hydrogels were constructed by inclusion of poly(PEGMA)‐co‐poly(DMA) with α‐cyclodextrin in aqueous solution. The temperature‐ or pH‐induced sol/gel transition in the hydrogels was completely reversible. Studies on structure/property relationships show that chain uniformity, graft density and copolymer concentration affect the hydrogel behavior. A dual‐responsive mechanism is proposed. The in vitro release of a model drug from this hydrogel was studied. It was found that the release kinetics were greatly accelerated at higher temperature and at acidic pH conditions, indicating potential applications in controlled drug delivery.

  相似文献   


11.
PEG400 (polyethylene glycol, MW 400) biscyanoacrylate is synthesized and copolymerized with 2‐octyl cyanoacrylate for potential use as bioadhesive. PEG400 biscyanoacrylate is synthesized from the esterification of anthracenyl cyanoacrylic acid where the anthracene unit serves as vinyl‐protecting group. Copolymerization increases the plasticity, mechanical strength, and resilience of the resulted polymer as determined by dynamic mechanical analysis. Peeling test confirms its superior bioadhesive properties. Surface morphology is characterized by SEM imaging. The formulations are cytocompatible and safe. This cyanoacrylate composition may provide improved bioadhesive cyanoacrylates.

  相似文献   


12.
The ring‐opening metathesis polymerizations (ROMP), using RuCl2 (PCy3)2CHPh, of a series of peptide‐functionalized norbornene derivatives have been investigated. Incorporation of a PEG‐monomer was found to prevent premature precipitation of polymer strands during the course of polymerization reactions and yield water compatible polymers in high conversions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3178–3190, 2007  相似文献   

13.
The covalent attachment of poly(ethylene glycol) (PEG) to therapeutically active proteins (PEGylation) has become an important method to deal with the pharmacological difficulties of these polypeptides, such as short body‐residence times and immunogenicity. However, the derivatives of PEG used for PEGylation lack further functional groups that would allow the addition of targeting or labeling moieties. Squaric acid diethyl ester was used for the chemoselective single‐step activation of poly(ethylene glycol)s into the respective ester amides. The resultant selective protein‐reactive poly(ethylene glycol)s were investigated with respect to their selectivity towards amino acid residues in bovine serum albumin (as a model protein). The presented procedure relies on a robust two‐step protocol and was found to be selective towards lysine residues; the activated polyethers are efficient and stoichiometric PEGylation agents with a remarkable hydrolytic stability over a period of several days. By adjusting the pD value of the conjugation mixture, the chemoselectivity of the activated PEGs towards the α‐ and ε‐amino groups of lysine methyl ester was effectively changed.  相似文献   

14.
Dihydroxyl capped biodegradable poly(DTC‐b‐PEG‐b‐DTC) (BCB) triblock copolymer and poly(TMC‐b‐DTC‐b‐PEG‐b‐DTC‐b‐TMC) (ABCBA) pentablock copolymer have been synthesized by PEG and BCB copolymer as macroinitiator in the presence of yttrium tris(2,6‐di‐tert‐butyl‐4‐methylphenolate). The copolymers without random segments have been thoroughly characterized by 1H, 13C‐NMR, SEC, and DSC. Molecular weights of the obtained copolymers are dependent on the amount of PEGs and coincide with the theoretical values. The exchange reaction of yttrium alkoxide and hydroxyl end group is essential for controlling the products' molecular weight. Their thermal behaviors are relevant to the chain lengths of PEG and PDTC segments. The Monte Carlo method has been developed to estimate the chain propagation constant and exchange reaction constant. In average, one exchange reaction will occur after approximately six monomer molecules insert into the growing chain. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1787–1796, 2005  相似文献   

15.
An aqueous solution of a poly(ethylene glycol)‐polycaprolactone‐poly(ethylene glycol) (PEG‐PCL‐PEG) with a composition of EG13CL23EG13 undergoes multiple transitions, from sol‐to‐gel (hard gel)‐to‐sol‐to‐gel (soft gel)‐to‐sol, in the concentration range 20.0∼35.0 wt.‐%. Through dynamic mechanical analysis, UV‐vis spectrophotometry, small angle X‐ray scattering, differential scanning calorimetry, microcalorimetry and 13C NMR spectroscopy, the mechanism of these transitions was investigated. The hard gel and soft gel are distinguished by the crystalline and amorphous state of the PCL. The extent of PEG dehydration and the molecular motion of each block also played a critical role in the multiple transitions. This paper suggests a new mechanism for these multiple transitions driven by temperature changes.

  相似文献   


16.
17.
Poly(ethylene glycol) (PEG) was modified with aniline groups at both the end, and then PEG‐PANI rod‐coil block polymers have been synthesized by polymerization of the aniline with the aniline‐modified PEG. FTIR, NMR, and elemental analysis provided the chemical strucutre of the as‐prepared polymers. The achiral rod‐coil copolymer could form different superstructures by means of self‐assembly when adding diethyl ether into its THF solution and the length of PANI segments is a key factor to the superstructures. AFM measurements revealed that they form spring‐like helical superstructures from the short PANI‐containing copolymers while these form fibrous helical superstructures from the longer PANI‐containing copolymer. A possible mechanism of the helical superstructures is suggested in this article and the driving force is believed the π–π stacking of the rigid segment of the copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 12–20, 2008  相似文献   

18.
A simple and efficient polymer grafting onto hydrothermal carbonization (HTC)‐derived materials is described. The method pertains to the Diels–Alder cycloaddition reaction of furan moieties present on the surface of a HTC material with the maleimide groups stemming from a maleimide protected poly(ethylene glycol) (Me‐PEG‐MI) by a retro Diels‐Alder reaction. The precursor polymer, HTC material, and final product are characterized. Successful grafting is confirmed by elemental analysis, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and dispersion studies.

  相似文献   


19.
《化学:亚洲杂志》2017,12(5):615-620
Controllable synthesis of coordination polymer (CP) isomers and revealing their structure–property relationships remain enormous challenges. Three new supramolecular isomers have been synthesized by tuning the poly(ethylene glycol) (PEG) content in the feed. These supramolecular isomers have the same framework formula of [Cu2I2(tppe)] and different architectures from the classical 2D stacking framework to a 3D entangled system with the coexistence of interpenetration and polycatenation, and a 3D topological framework. Interestingly, these CPs could be utilized for capturing iodine molecules. According to multiple complementary experiments and crystallographic analyses, iodine capture is mainly based on halogen‐bond interactions in the inorganic {Cu2I2} building blocks of the framework. The present study describes a structure–property relationship in supramolecular isomerism with distinct topological structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号