首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Current antisense oligonucleotide (ASO) therapies for the treatment of central nervous system (CNS) disorders are performed through invasive administration, thereby placing a major burden on patients. To alleviate this burden, we herein report systemic ASO delivery to the brain by crossing the blood–brain barrier using glycemic control as an external trigger. Glucose‐coated polymeric nanocarriers, which can be bound by glucose transporter‐1 expressed on the brain capillary endothelial cells, are designed for stable encapsulation of ASOs, with a particle size of about 45 nm and an adequate glucose‐ligand density. The optimized nanocarrier efficiently accumulates in the brain tissue 1 h after intravenous administration and exhibits significant knockdown of a target long non‐coding RNA in various brain regions, including the cerebral cortex and hippocampus. These results demonstrate that the glucose‐modified polymeric nanocarriers enable noninvasive ASO administration to the brain for the treatment of CNS disorders.  相似文献   

2.
Multifunctional hybrid micelles are prepared from amphiphilic mal‐PEG‐b‐PLA and mPEG‐b‐P(LA‐co‐DHC/RhB) block copolymers. A specific anti‐transferrin receptor antibody, OX26, is linked onto the surface of the micelles. ELISA indicates that the conjugated antibody preserves its activity. OX26 conjugation can increase the uptake efficiency of micelles by target cell lines (C6). Pharmacokinetics and in vivo biodistribution experiments are carried out to investigate the ability of OX26‐conjugated micelles (immunomicelles) to cross the blood–brain barrier. The data show that the brain uptake of OX26‐conjugated micelles is much more than that of OX26‐free ones. Therefore, OX26‐conjugated micelles will be promising drug carriers to cross the blood‐brain barrier.

  相似文献   


3.
4.
The blood–brain barrier (BBB) is a formidable physical and enzymatic barrier that tightly controls the passage of molecules from the blood to the brain. In fact, less than 2 % of all potential neurotherapeutics are able to cross it. Here, by applying the retro‐enantio approach to a peptide that targets the transferrin receptor, a full protease‐resistant peptide with the capacity to act as a BBB shuttle was obtained and thus enabled the transport of a variety of cargos into the central nervous system.  相似文献   

5.
DNA nanotechnology plays an increasingly important role in the biomedical field; however, its application in the design of organic nanomaterials is underexplored. Herein, we report the use of DNA nanotechnology to transport a NIR‐II‐emitting nanofluorophore across the blood–brain barrier (BBB), facilitating non‐invasive imaging of brain tumors. Specifically, the DNA block copolymer, PS‐b‐DNA, is synthesized through a solid‐phase click reaction. We demonstrate that its self‐assembled structure shows exceptional cluster effects, among which BBB‐crossing is the most notable. Therefore, PS‐b‐DNA is utilized as an amphiphilic matrix to fabricate a NIR‐II nanofluorephore, which is applied in in vivo bioimaging. Accordingly, the NIR‐II fluorescence signal of the DNA‐based nanofluorophore localized at a glioblastoma is 3.8‐fold higher than the NIR‐II fluorescence signal of the PEG‐based counterpart. The notably increased imaging resolution will significantly benefit the further diagnosis and therapy of brain tumors.  相似文献   

6.
Drug delivery across the blood–brain barrier (BBB) is a formidable challenge for therapies targeting the central nervous system. Although BBB shuttle peptides enhance transport into the brain non‐invasively, their application is partly limited by lability to proteases. The present study proposes the use of cyclic peptides derived from venoms as an affordable way to circumvent this drawback. Apamin, a neurotoxin from bee venom, was minimized by reducing its complexity, toxicity, and immunogenicity, while preserving brain targeting, active transport, and protease resistance. Among the analogues designed, the monocyclic lactam‐bridged peptidomimetic MiniAp‐4 was the most permeable. This molecule is capable of translocating proteins and nanoparticles in a human‐cell‐based BBB model. Furthermore, MiniAp‐4 can efficiently deliver a cargo across the BBB into the brain parenchyma of mice.  相似文献   

7.
8.
9.
Amphiphilic macromolecules (AMs) have unique branched hydrophobic domains attached to linear PEG chains. AMs self‐assemble in aqueous solution to form micelles that are hydrolytically stable in physiological conditions (37 °C, pH 7.4) over 4 weeks. Evidence of AM biodegradability was demonstrated by complete AM degradation after 6 d in the presence of lipase. Doxorubicin (DOX) was chemically conjugated to AMs via a hydrazone linker to form DOX–AM conjugates that self‐assembled into micelles in aqueous solution. The conjugates were compared with DOX‐loaded AM micelles (i.e., physically loaded DOX) on DOX content, micellar sizes and in vitro cytotoxicity. Physically encapsulated DOX loading was higher (12 wt.‐%) than chemically bound DOX (6 wt.‐%), and micellar sizes of DOX‐loaded AMs (≈16 nm) were smaller than DOX–AMs (≈30 nm). In vitro DOX release from DOX–AM conjugates was faster at pH 5.0 (100%) compared to pH 7.4 (78%) after 48 h, 37 °C. Compared to free DOX and physically encapsulated DOX, chemically bound DOX had significantly higher cytotoxicity at 10?7 M DOX dose against human hepatocellular carcinoma cells after 72 h. Overall, DOX–AM micelles showed promising characteristics as stable, biodegradable DOX nanocarriers.

  相似文献   


10.
Alzheimer's disease (AD) is an incurable neurodegenerative brain disorder that exhibits clear pathologic changes in the hippocampus. Traditional drug delivery systems are ineffective due to the existence of the blood–brain barrier (BBB). In this study, an efficient, stable, and easily constructed nanosystem (CB‐Gd‐Cy5.5) based on the cholera toxin B subunit (CB) is designed to improve the efficiency of drug delivery to the brain, especially the hippocampus. Through intranasal administration, CB‐Gd‐Cy5.5 is easily delivered to the brain without intervention by the BBB. The CB in CB‐Gd‐Cy5.5 is used for specifically combining with the monosialoganglioside GM1, which is widely found in the hippocampus. This nanosystem exhibits impressive performance in accumulating in the hippocampus. In addition, the good magnetic resonance imaging (MRI) capability of CB‐Gd‐Cy5.5 can satisfy the monitoring of AD in the different stages.  相似文献   

11.
12.
Polymers conjugated to the exterior of a protein mediate its interactions with surroundings, enhance its processability and can be used to direct its macroscopic assemblies. Most studies to date have focused on peptide–polymer conjugates based on hydrophilic polymers. Engineering amphiphilicity into protein motifs by covalently linking hydrophobic polymers has the potential to interface peptides and proteins with synthetic polymers, organic solvents, and lipids to fabricate functional hybrid materials. Here, we synthesized amphiphilic peptide–polymer conjugates in which a hydrophobic polymer is conjugated to the exterior of a heme‐binding four‐helix bundle and systematically investigated the effects of the hydrophobicity of the conjugated polymer on the peptide structure and the integrity of the heme‐binding pocket. In aqueous solution with surfactants present, the side‐conjugated hydrophobic polymers unfold peptides and may induce an α‐helix to β‐sheet conformational transition. These effects decrease as the polymer becomes less hydrophobic and directly correlate with the polymer hydrophobicity. Upon adding organic solvent to solubilize the hydrophobic polymers, however, the deleterious effects of hydrophobic polymers on the peptide structures can be eliminated. Present studies demonstrate that protein structure is sensitive to the local environment. It is feasible to dissolve amphiphilic peptide–polymer conjugates in organic solvents to enhance their solution processability while maintaining the protein structures.

  相似文献   


13.
14.
Keke capsule as a traditional Chinese medicine formulation is used to relieve cough, for analgesia and to reduce bronchial asthma. The multi‐components are absorbed into the blood and brain after oral administration of Keke capsule, with no systematic investigation so far. A reliable and rapid UPLC–QTOF–MSE combined with a data processing software platform was used to characterize the components of Keke capsule and simultaneously identify bioactive components in blood and brain tissues in rat after oral administration. Consequently, a total of 41 components of Keke capsule, including alkaloids, flavone, flavonols, triterpene, lignanoid, organic acids, glycosides and coumarin were identified. Twenty‐one components were found in plasma, including 18 prototypes and three metabolites; 15 components were found in brain tissues, including 10 prototypes and five metabolites. Alkaloids and flavonoids in Keke capsule were the main components which were absorbed into blood. The main alkaloids of Keke capsule can pass through the blood–brain barrier and show different distribution tendencies in brain tissues. The main components of keke capsule was simultaneously analyzed by throughput analysis, and the corresponding bioactive components were examined by blood‐brain barrier in the rat after oral administration of the capsule.  相似文献   

15.
The blood–brain barrier (BBB) restricts access to the brain of more than 98 % of therapeutic agents and is largely responsible for treatment failure of glioblastoma multiforme (GBM). Therefore, it is of great importance to develop a safe and efficient strategy for more effective drug delivery across the BBB into the brain. Inspired by the extraordinary capability of rabies virus (RABV) to enter the central nervous system, we report the development and evaluation of the metal–organic framework‐based nanocarrier MILB@LR, which closely mimicked both the bullet‐shape structure and surface functions of natural RABV. MILB@LR benefited from a more comprehensive RABV‐mimic strategy than mimicking individual features of RABV and exhibited significantly enhanced BBB penetration and brain tumor targeting. MILB@LR also displayed superior inhibition of tumor growth when loaded with oxaliplatin. The results demonstrated that MILB@LR may be valuable for GBM targeting and treatment.  相似文献   

16.
Lysosomes of brain capillary endothelial cells are implicated in nicotine acetylcholine receptor (nAChR)‐mediated transcytosis and act as an enzymatic barrier for the transport of peptide ligands to the brain. A D ‐peptide ligand of nAChRs (termed DCDX), which binds to nAChRs with an IC50 value of 84.5 nM , was developed by retro–inverso isomerization. DCDX displayed exceptional stability in lysosomal homogenate and serum, and demonstrated significantly higher transcytosis efficiency in an in vitro blood–brain barrier monolayer compared with the parent L ‐peptide. When modified on liposomal surface, DCDX facilitated significant brain‐targeted delivery of liposomes. As a result, brain‐targeted delivery of DCDX modified liposomes enhanced therapeutic efficiency of encapsulated doxorubicin for glioblastoma. This study illustrates the importance of ligand stability in nAChRs‐mediated transcytosis, and paves the way for developing stable brain‐targeted entities.  相似文献   

17.
Delivery of drugs to brain tumors is difficult due to the impermeability, and variable nature of the blood/tumor barrier. Of the various strategies designed to improve drug uptake-intracellularly and into the brain, cationic carriers seem to offer an advantage. In the current investigation cationic polysaccharide–methotrexate conjugates were examined in the rat. Conjugates were prepared from N,O-carboxymethyl chitosan (NOCC) and 3H-methotrexate (MTX) by two different synthetic schemes, resulting in NOCCMTX-1 and NOCCMTX-2. NOCCMTX-1 appeared to have a higher degree of cross-polymerization than NOCCMTX-2. Each conjugate and free MTX were administered intra-arterially in a retrograde manner in the external carotid artery at a MTX dose of 1 mg/kg as a constant rate infusion over 30 min. Animals were sacrificed at various times after administration, and blood and tissue samples collected, processed in a sample oxidizer, and then measured for radioactivity. Brain MTX concentrations were 18- and 12-fold greater at 15 min and 3 hr, respectively, following NOCCMTX-1 administration compared to free MTX treatment. However, NOCCMTX-1 resulted in animal death at about 12 hr after administration. NOCMTX-2 was found to be non-toxic, yet did not increase brain MTX concentrations compared to free drug administrations after correction for MTX in residual blood. Further investigations are planned to combine the positive drug targeting effect of NOCCMTX-1 with the safety of NOCCMTX-2.  相似文献   

18.
The delivery of macromolecular platinum drugs into cancerous cells is enhanced by conjugating the polymer to albumin. The monomers N‐(2‐hydroxypropyl)methacrylamide (HPMA) and Boc protected 1,3‐diaminopropan‐2‐yl acrylate (Ac‐DAP‐Boc) are copolymerized in the presence of a furan protected maleimide functionalized reversible addition‐fragmentation chain transfer (RAFT) agent. The resulting polymer with a composition of P(HPMA14co‐(Ac‐DAP‐Boc)9) and a molecular weight of Mn = 7600 g mol−1 (Đ = 1.24) is used as a macromolecular ligand for the conjugation to the platinum drug. Thermogravimetric analysis reveals full conjugation. After deprotection of the maleimide functionality of the polymer, the reactive polymer is conjugated to albumin using the Cys34 functionality. The conjugation is monitored using size exclusion chromatography, MALDI–TOF (matrix assisted laser desorption ionization time‐of‐flight), and SDS Page (sodium dodecyl sulphate polyacrylamide gel electrophoresis). The polymer–albumin conjugates self‐assemble in water into nanoparticles of sizes of around 80 nm thanks to the hydrophobic nature of the platinum drugs. The albumin coated nanoparticles are readily taken up by ovarian cancer cell lines and they show superior toxicity compared to a control sample without protein coating.

  相似文献   


19.
Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood–brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.  相似文献   

20.
Advances in the field of shuttle-mediated drug delivery have been made in the last decade; however, the treatment of brain disorders still remains a great challenge because of the presence of the blood-brain barrier (BBB), a structure that limits the access of drugs to their site of action in the central nervous system. Several strategies have been proposed to enhance the transport of drugs across the BBB. In this Review, we focus on the vector-mediated approach, in which a drug is coupled to a molecule (shuttle) that has the ability to cross the BBB and deliver the drug to the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号