首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three‐dimensional hydrogel supports for mesenchymal and neural stem cells (NSCs) are promising materials for tissue engineering applications such as spinal cord repair. This study involves the preparation and characterization of superporous scaffolds based on a copolymer of 2‐hydroxyethyl and 2‐aminoethyl methacrylate (HEMA and AEMA) crosslinked with ethylene dimethacrylate. Ammonium oxalate is chosen as a suitable porogen because it consists of needle‐like crystals, allowing their parallel arrangement in the polymerization mold. The amino group of AEMA is used to immobilize RGDS and SIKVAVS peptide sequences with an N‐γ‐maleimidobutyryloxy succinimide ester linker. The amount of the peptide on the scaffold is determined using 125I radiolabeled SIKVAVS. Both RGDS‐ and SIKVAVS‐modified poly(2‐hydroxyethyl methacrylate) scaffolds serve as supports for culturing human mesenchymal stem cells (MSCs) and human fetal NSCs. The RGDS sequence is found to be better for MSC and NSC proliferation and growth than SIKVAVS.

  相似文献   


2.
Complementary nucleobase‐functionalized polymeric micelles, a combination of adenine‐thymine (A‐U) base pairs and a blend of hydrophilic–hydrophobic polymer pairs, can be used to construct 3D supramolecular polymer networks; these micelles exhibit excellent self‐assembly ability in aqueous solution, rapid pH‐responsiveness, high drug loading capacity, and triggerable drug release. In this study, a multi‐uracil functionalized poly(ε‐caprolactone) (U‐PCL) and adenine end‐capped difunctional oligomeric poly(ethylene glycol) (BA‐PEG) are successfully developed and show high affinity and specific recognition in solution owing to dynamically reversible A‐U‐induced formation of physical cross‐links. The U‐PCL/BA‐PEG blend system produces supramolecular micelles that can be readily adjusted to provide the desired critical micellization concentration, particle size, and stability. Importantly, in vitro release studies show that doxorubicin (DOX)‐loaded micelles exhibit excellent DOX‐encapsulated stability under physiological conditions. When the pH value of the solution is reduced from 7.4 to 5.0, DOX‐loaded micelles can be rapidly triggered to release encapsulated DOX, suggesting these polymeric micelles represent promising candidate pH‐responsive nanocarriers for controlled‐release drug delivery and pharmaceutical applications.

  相似文献   


3.
A series of pH‐triggered charge‐reversal polyurethane copolymers (PS‐PUs) containing methoxyl‐poly(ethylene glycol) (mPEG), carboxylic acid groups, and piperazine groups is presented in this work. The obtained PS‐PUs copolymers can form into stable micelles at pH 7.4, which response to a narrow pH change (5.5–7.5) and show a tunable pH‐triggered charge‐reversal property. Doxorubicin (DOX) is encapsulated into the PS‐PU micelles as a model drug. The drug release of DOX‐loaded PS‐PU micelles shows an obviously stepped‐up with reducing the pH. Meanwhile, it is found that the charge‐reversal property can improve the cellular uptake behavior and intracellular drug release in both HeLa cells and MCF‐7 cells. Additionally, the time‐dependent cytotoxicity of the DOX‐loaded PS‐PU micelles is confirmed by MTT assay. Attributed to the tunable charge‐reversal property through changing the molar ratio of piperazine/carboxyl, the PS‐PU micelles will be a potential candidate as an intelligent drug delivery system in future studies.

  相似文献   


4.
To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle‐in‐microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan‐graft‐poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self‐assembled into nanoscale micelle‐like core–shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin‐6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP‐2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP‐2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects.

  相似文献   


5.
Polyelectrolyte block copolymer micelles assembled thin film is switched in response to local photocatalytic reactions on titanium dioxide, resulting in a layer of variable height, stiffness in response to visible light irradiation. Preosteoblasts migrate toward stiffer side of the substrates.

  相似文献   


6.
Successful application of gene silencing approaches critically depends on systems that are able to safely and efficiently deliver genetic material such as small interfering RNA (siRNA). Due to their beneficial well‐defined dendritic nanostructure, self‐assembling dendrimers are emerging as promising nanovectors for siRNA delivery. However, these kinds of vectors are plagued with stability issues, especially when considered for in vivo applications. Therefore, in the present study, disulfide‐based temporarily fixed micelles are developed that can degrade upon reductive conditions, and thus lead to efficient cargo release. In detail, lipoic acid‐derived crosslinked micelles are synthesized based on small polymerizable dendritic amphiphiles. Particularly, one candidate out of this series is able to efficiently release siRNA due to its redox‐responsive biodegradable profile when exposed to simulated intracellular environments. As a result, the reduction‐triggered disassembly leads to potent gene silencing. In contrast, noncrosslinkable, structurally related constructs fails under the tested assay conditions, thereby confirming the applied rational design approach and demonstrating its large potential for future in vivo applications.

  相似文献   


7.
Furoxans, or 1,2,5‐oxadiazole‐N‐oxides, are a class of nitric oxide (NO)‐donating compounds that release NO in response to thiol‐containing molecules. In this study, polymeric micelles bearing furoxan moieties are prepared from an amphiphilic block copolymer consisting of a hydrophobic furoxan‐bearing block and a hydrophilic poly(N‐acryloylmorpholine) block. The block copolymer is prepared using a combination of the reversible addition–fragmentation chain transfer polymerization and the copper‐catalyzed Huisgen cycloaddition techniques. The block copolymers form spherical micelles with a diameter of 50 nm by self‐assembly in water. The micelles release NO in response to cysteine and show improved stability against hydrolytic decomposition. Furthermore, the micelles show a synergistic anti‐proliferative effect with ibuprofen in human colon cancer cells.

  相似文献   


8.
Glycodendrimers based on aromatic cores have an amphiphilic character and have been reported to generate supramolecuar assemblies in water. A new group of glycodendrimers with an aromatic rod‐like core were recently described as potent antagonists of DC‐SIGN‐mediated viral infections. A full characterization of the aggregation properties of these materials is presented here. The results show that these compounds exist mostly as monomers in water solution, in dynamic equilibrium with small aggregates (dimers or trimers). Larger aggregates observed by dynamic light scattering and transmission Electron Microscopy for some of the dendrimers are found to be portions of materials not fully solubilized and can be removed either by optimizing the dissolution protocol or by centrifugation of the samples.

  相似文献   


9.
In this article, the low‐molecular weight biodegradable methoxy poly (ethylene glycol)‐poly (d ,l ‐lactide‐co‐glycolide) (PP) is chosen as polymeric skeleton to be conjugated with docetaxel (DTX) by disulfide bond (PP‐SS‐DTX) to construct the reduction‐sensitive drug delivery system. The conjugates are synthesized via three steps and are further employed to physically load free DTX to develop the PP‐SS‐DTX/DTX micelles which exhibit many merits including high drug loading content, good stability, and stimuli‐sensitive release of drugs. The hydrodynamic diameter of PP‐SS‐DTX/DTX micelles determined by DLS is 112.3 nm. The hemolysis assay reveals the good blood compatibility of PP‐SS‐DTX/DTX micelles. In order to investigate the reductive sensitivity of PP‐SS‐DTX/DTX micelles, dithiothreitol (DTT) is added into the release medium and a programmed drug release mode is observed in the conjugated micelles. In vitro cytotoxity assay shows that the PP‐SS‐DTX/DTX micelles are more cytotoxic than that of free DTX solution for both MCF‐7 and B16F10 cancer cells. In addition, the PP‐SS‐DTX/DTX micelles also show a higher cellular uptake rate than that of free DTX. Hence, the prepared reduction‐sensitive PP‐SS‐DTX/DTX micelles are effective on inhibiting cancer cells compared with the free DTX which would be a promising carrier in cancer therapy.

  相似文献   


10.
For efficient treatment of multidrug‐resistance (MDR) breast cancer cells, design of biocompatible mixed micelles with diverse functional moieties and superior stability is needed for targeted delivery of chemical drugs. In this study, polypropylene glycol (PPG)‐grafted hyaluronic acid (HA) copolymers (PPG‐g‐HA) are used to make mixed micelles with different amounts of pluronic L61, named PPG‐g‐HA/L61 micelles. Optimized PPG‐g‐HA/L61 micelles with 3% pluronic L61 exhibit great stability in aqueous solution, superior biocompatibility, and significantly increased uptake into MCF‐7 MDR cells via HA–CD44‐specific interactions when compared to free doxorubicin (DOX) and other types of micelles. In addition, DOX in PPG‐g‐HA/L61 micelles with 3% pluronic L61 have toxicity in MCF‐7 MDR cells but significantly lower toxicity in fibroblast L929 cells compared to free DOX. Thus, PPG‐g‐HA/L61 micelles with 3% pluronic L61 content can be a promising nanocarrier to overcome MDR and release DOX in a hyaluronidase‐sensitive manner without any toxicity to normal cells.

  相似文献   


11.
Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride‐ester) (PAE) backbone via melt‐condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin‐based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo‐first order kinetic experiments on model compounds, butyric anhydride and 3‐butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin‐based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods.

  相似文献   


12.
Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71D3)‐based micelles effectively encapsulate the doxorubicin (DOX) with a high drug‐loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296D1) vesicles. DOX released from the resultant P71D3/DOX micelles is approximately 1.3‐fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71D3/DOX micelles also enhance drug potency in breast cancer MDA‐MB‐231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy‐dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.

  相似文献   


13.
Electrospun poly‐l ‐lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide‐end capped AGMA1, a biocompatible polyamidoamine with arg‐gly‐asp (RGD)‐reminiscent repeating units. The resultant mixture is finally cured giving PLLA‐AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the PLLA nanofibers via the addition reaction of the surface amine groups to a part of the terminal acrylic double bonds of AGMA1 oligomers. Preliminary tested as scaffolds, the composites prove capable of maintaining short‐term undifferentiated cultures of human pluripotent stem cells in feeder‐free conditions.

  相似文献   


14.
Cell‐free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell‐adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non‐cell adhesive properties via a mix‐and‐match approach using ureido‐pyrimidinone (UPy)‐modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end‐functionalized or chain‐extended UPy‐polycaprolactone (UPy‐PCL or CE‐UPy‐PCL, respectively) with end‐functionalized UPy‐poly(ethylene glycol) (UPy‐PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy‐PCL with UPy‐PEG, but poor mechanical properties, whereas CE‐UPy‐PCL scaffolds are mechanically stable. As a proof‐of‐concept for the use of non‐cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy‐PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.

  相似文献   


15.
Adhesion and proliferation of cells are often suppressed in rigid hydrogels as gel stiffness induces mechanical stress to embedded cells. Herein, the composite hydrogel systems to facilitate high cellular activities are described, while maintaining relatively high gel stiffness. This unusual property is obtained by harmonizing gelatin‐poly(ethylene glycol)‐tyramine (GPT, semisynthetic polymer) and gelatin‐hydroxyphenyl propionic acid conjugates (GH, natural polymer) into hydrogels. A minimum GH concentration of 50% is necessary for cells to be proliferative. GPT is utilized to improve biological stability (>1 week) and gelation time (<20 s) of the hydrogels. These results suggest that deficiency in cellular activity driven by gel stiffness could be overcome by finely tuning the material properties in the microenvironments.

  相似文献   


16.
New biomaterials with the properties of both bone and cartilage extracellular matrices (ECM) should be designed and used with co‐culture systems to address clinically applicable osteochondral constructs. Herein, a co‐culture model is described based on a trilayered silk fibroin‐peptide amphiphile (PA) scaffold cultured with human articular chondrocytes (hACs) and human bone marrow mesenchymal stem cells (hBMSCs) in an osteochondral cocktail medium for the cartilage and bone sides, respectively. The presence of hACs in the co‐cultures significantly increases the osteogenic differentiation potential of hBMSCs based on ALP activity, RT‐PCR for osteogenic markers, calcium analyses, and histological stainings, whereas hACs produces a significant amount of glycosaminoglycans (GAGs) for the cartilage region, even in the absence of growth factor TGF‐β family in the co‐culture medium. This trilayered scaffold with trophic effects offers a promising strategy for the study of osteochondral defects.

  相似文献   


17.
Poly(2‐alkenyl‐2‐oxazoline)s are promising functional polymers for a variety of biomedical applications, such as drug delivery systems, peptide conjugates, or gene delivery. In this study, poly(2‐isopropenyl‐2‐oxazoline) (PIPOx) is prepared through free‐radical polymerization initiated with azobisisobutyronitrile. Reactive 2‐oxazoline units in the side chain support an addition reaction with different compounds containing a carboxylic group, which facilitates the preparation of polymers labeled with two different fluorescent dyes. The cytotoxicities of 2‐oxazoline monomers, PIPOx, and fluorescently labeled PIPOx are evaluated in vitro using an 3‐(4,5‐Dimethyldiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and ex vivo using a cell proliferation assay with adenosine triphosphate bioluminescence. The cell uptake of labeled PIPOx is used to determine the colocalization of PIPOx with cell organelles that are part of the endocytic pathway. For the first time, it is shown that poly(2‐isopropenyl‐2‐oxazoline) is a biocompatible material and is suitable for biomedical applications; further, its immunomodulative properties are evaluated.

  相似文献   


18.
A visible light and pH responsive anticancer drug delivery system based on polymer‐coated mesoporous silica nanoparticles (MSNs) has been developed. Perylene‐functionalized poly(dimethylaminoethyl methacrylates) sensitive to visible light and pH are electrostatically attached on the surface of MSNs to seal the nanopores. Stimulation of visible light and acid can unseal the nanopores to induce controlled drug release from the MSNs. More interestingly, the release can be enhanced under the combined stimulation of the dual‐stimuli. The synergistic effect of visible light and acid stimulation on the efficient release of anticancer drugs from the nanohybrids endows the system with great potential for cancer therapy.

  相似文献   


19.
A bioinspired adhesive material, polydopamine (pDA), was employed as an interfacial glue to stably immobilize human neural stem cells (hNSCs) on the external surface of biodegradable polycaprolactone (PCL) microspheres, thereby serving as versatile key systems that can be used for cell carriers. The pDA decoration on the PCL microspheres has been resulted in robust hNSC immobilization as well as proliferation on their curved surfaces. The pDA coating has transformed the hydrophobic PCL systems toward water‐friendly and sticky characteristics, thereby resulting in full dispersion in aqueous solution and stable adherence onto a wet biological surface. Adeno‐associated virus, a safe gene vector capable of effectively regulating cell behaviors, can be decorated on the PCL surfaces and delivered efficiently to hNSCs adhered to the microsphere exteriors. These distinctive multiple benefits of the sticky pDA microspheres can provide core technologies that can boost the therapeutic effects of cell therapy approaches.

  相似文献   


20.
The aim of this work is the preparation of an active nanovehicle for the effective administration of α‐tocopheryl succinate (α‐TOS). α‐TOS is loaded in the core of nanoparticles (NPs) based on amphiphilic pseudo‐block copolymers of N‐vinyl pyrrolidone and a methacrylic derivative of α‐TOS. These well‐defined spherical NPs have sizes below 165 nm and high encapsulation efficiencies. In vitro activity of NPs is tested in hypopharynx squamous carcinoma (FaDu) cells and nonmalignant epithelial cells, demonstrating that the presence of additional α‐TOS significantly enhances its antiproliferative activity; however, a range of selective concentrations is observed. These NPs induce apoptosis of FaDu cells by activating the mitochondria death pathway (via caspase‐9). Both loaded and unloaded NPs act via complex II and produce high levels of reactive oxygen species that trigger apoptosis. Additionally, these NPs effectively suppress the vascular endothelial growth factor (VEGF) expression of human umbilical vein endothelial cells (HUVECs). These results open the possibility to use this promising nanoformulation as an α‐TOS delivery system for the effective cancer treatment, effectively resolving the current limitations of free α‐TOS administration.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号