首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对具有退化工件的排序模型,考虑了单机排序和两台机器流水作业的工期窗口安排问题,在这一模型中,工件的加工时间是与其开工时间和退化率有关的一个线性函数。目标是找到一个最优排序和确定工期窗口的开始时间及大小以便最小化所有工件的费用函数,费用函数由四部分组成:提前、延误、工期窗口开始时间和工期窗口大小。对所研究的单机问题,详细地讨论了符合现实情况的几种类型问题,并得到了问题的最优解;对两台机器流水作业问题,给出了多项式算法。  相似文献   

2.
In this paper, we consider the single-machine scheduling problems with nonlinear deterioration. By the nonlinear deterioration effect, we mean that the processing times of jobs are nonlinear functions of their starting times. We show that even with the introduction of nonlinear deterioration to job processing times, single machine makespan minimization problem remains polynomially solvable. We also show that an optimal schedule of the total completion time minimization problem is V-shaped with respect to job normal processing times. A heuristic algorithm utilizing the V-shaped property is proposed, and computational experiments show that it performs effectively and efficiently in obtaining near-optimal solutions.  相似文献   

3.
姜昆 《运筹与管理》2020,29(7):105-109
研究带凸资源和恶化效应的单机窗口指派排序问题,其中窗口指的是松弛窗口,凸资源和恶化效应指的是工件的实际加工时间是其开始加工时间的线性函数,是其资源消耗量的凸函数。目标是确定工件的加工顺序,资源分配量以及窗口的开始加工时间和长度使其在总资源消耗费用(与窗口有关的排序费用)有上界限制的条件下,极小化与窗口有关的排序费用(总资源消耗费用)。获得了求解上述问题的最优算法,证明了该问题是多项式时间可解的。  相似文献   

4.
In this paper, we address a two-machine flow shop scheduling problem under simple linear deterioration. By a simple linear deterioration function, we mean that the processing time of a job is a simple linear function of its execution start time. The objective is to find a sequence that minimizes total weighted completion time. Optimal schedules are obtained for some special cases. For the general case, several dominance properties and two lower bounds are derived to speed up the elimination process of a branch-and-bound algorithm. A heuristic algorithm is also proposed to overcome the inefficiency of the branch-and-bound algorithm. Computational analysis on randomly generated problems is conducted to evaluate the branch-and-bound algorithm and heuristic algorithm.  相似文献   

5.
考虑带有退化效应和序列相关运输时间的单机排序问题. 工件的加工时间是其开工时间的简单线性增加函数. 当机器单个加工工件时, 极小化最大完工时间、(加权)总完工时间和总延迟问题被证明是多项式可解的, EDD序对于极小化最大延迟问题不是最优排序, 另外, 就交货期和退化率一致情形给出了一最优算法. 当机器可分批加工工件时, 分别就极小化最大完工时间和加权总完工时间问题提出了多项式时间最优算法.  相似文献   

6.
考虑了工件具有退化效应的两台机器流水作业可拒绝排序问题,其中工件的加工时间是其开工时间的简单线性增加函数.每个工件或者被接收,依次在两台流水作业机器上被加工,或者被拒绝但需要支付一个确定的费用.考虑的目标是被接收工件的最大完工时间加上被拒绝工件的总拒绝费用之和.证明了问题是NP-难的,并提出了一个动态规划算法.最后对一种特殊情况设计了多项式时间最优算法.  相似文献   

7.
In this paper problems of time-dependent scheduling on dedicated machines are considered. The processing time of each job is described by a function which is dependent on the starting time of the job. The objective is to minimise the maximum completion time (makespan). We prove that under linear deterioration the two-machine flow shop problem is strongly NP-hard and the two-machine open shop problem is ordinarily NP-hard. We show that for the three-machine flow shop and simple linear deterioration there does not exist a polynomial-time approximation algorithm with the worst case ratio bounded by a constant, unless P=NP. We also prove that the three-machine open shop problem with simple linear deterioration is ordinarily NP-hard, even if the jobs have got equal deterioration rates on the third machine.  相似文献   

8.
恶化率与工件无关的线性加工时间调度问题   总被引:3,自引:1,他引:2  
讨论恶化率与工件无关的线性加工时间调度问题 .对于工件间具有平行链约束 ,目标函数为极小化最大完工时间的单机问题 ,分别就链不允许中断和链允许中断两种情况给出了最优算法 .对于工件间没有优先约束 ,目标函数为极小化完工时间和的平行机问题 ,证明了工件按基本加工时间不减排列可以得到最优调度 .  相似文献   

9.
In this paper, we consider the single-machine scheduling problems with a time-dependent deterioration. By the time-dependent deterioration, we mean that the processing time of a job is defined by an increasing function of total normal processing time of jobs in front of it in the sequence. The objective is to minimize the total completion time. We develop a mixed integer programming formulation for the problem. The complexity status of this problem remains open. Hence, we use the smallest normal processing time (SPT) first rule as a heuristic algorithm for the general cases and analyze its worst-case error bound. Two heuristic algorithms utilize the V-shaped property are also proposed to solve the problem. Computational results are presented to evaluate the performance of the proposed algorithms.  相似文献   

10.
Scheduling research has increasingly taken the concept of deterioration into consideration. In this paper, we study a single machine group scheduling problem with deterioration effect, where the jobs are already put into groups, before any optimization. We assume that the actual processing times of jobs are increasing functions of their starting times, i.e., the job processing times are described by a function which is proportional to a linear function of time. The setup times of groups are assumed to be fixed and known. For some special cases of minimizing the makespan with ready times of the jobs, we show that the problem can be solved in polynomial time for the proposed model. For the general case, a heuristic algorithm is proposed, and the computational experiments show that the performance of the heuristic is fairly accurately in obtaining near-optimal solutions. The results imply that the average percentage error of the proposed heuristic algorithm from optimal solutions is less than 3%.  相似文献   

11.
This paper deals with a single machine scheduling problem with start time dependent job processing times. The job processing times are characterized by decreasing linear functions dependent on their start times. The problem is to find a schedule for which the total weighted completion time is minimized. It is proved that the problem is NP-hard. Some properties of special cases of the general problem are also given. Based on these results, two heuristic algorithms are constructed and their performance is compared.  相似文献   

12.
This paper shows that the single machine scheduling problem with multiple operations per job separated by minimum specified time-lags is NP-hard in the strong sense. Seven simple and polynomially bounded heuristic algorithms are developed for its solution when each job requires only two operations. Empirical evaluation shows that the percentage deviation of the heuristic solutions from their lower bounds is quite low and the effectiveness of these heuristic algorithms in finding optimal schedules increases with an increase in the number of jobs.  相似文献   

13.
Deteriorating jobs scheduling problems have been extensively studied in recent years. However, it is assumed that there is a common goal to minimize for all jobs in most of the research. In many management situations, multiple agents compete on the usage of a common processing resource. In this paper, we considered a single-machine scheduling problem with a linear deterioration assumption where the objective is to minimize the total weighted completion time of jobs from the first agent with the restriction that no tardy job is allowed for the second agent. We proposed a branch-and-bound algorithm and three heuristic algorithms to search for the optimal solution and near-optimal solutions, respectively. A computational experiment was conducted to evaluate the performance of the proposed algorithms.  相似文献   

14.
We consider single-machine scheduling problems with time and position dependent job processing times. In many industrial settings, the processing time of a job changes due to either job deterioration over time or machine/worker’s learning through experiences. In the models we study, each job has its normal processing time. However, a job’s actual processing time depends on when its processing starts and how many jobs have completed before its start. We prove that the classical SPT (Shortest Processing Time) rule remains optimal when we minimize the makespan or the total completion time. For problems of minimizing the total weighted completion time, the maximum lateness, and the discounted total weighted completion time, we present heuristic sequencing rules and analyze the worst-case bounds for performance ratios. We also show that these heuristic rules can be optimal under some agreeable conditions between the normal processing times and job due dates or weights.  相似文献   

15.
In this paper a problem of scheduling a single machine under linear deterioration which aims at minimizing the number of tardy jobs is considered. According to our assumption, processing time of each job is dependent on its starting time based on a linear function where all the jobs have the same deterioration rate. It is proved that the problem is NP-hard; hence a branch and bound procedure and a heuristic algorithm with O(n 2) is proposed where the heuristic one is utilized for obtaining the upper bound of the B&B procedure. Computational results for 1,800 sample problems demonstrate that the B&B method can solve problems with 28 jobs quickly and in some other groups larger problems are also solved. Generally, B&B method can optimally solve 85% of the samples which shows high performance of the proposed method. Also it is shown that the average value of the ratio of optimal solution to the heuristic algorithm result with the objective ??(1 ? Ui) is at most 1.11 which is more efficient in comparison to other proposed algorithms in related studies in the literature.  相似文献   

16.
We study the rescheduling with new orders on a single machine under the general maximum allowable time disruptions. Under the restriction of general maximum allowable time disruptions, each original job has an upper bound for its time disruption (regarded as the maximum allowable time disruption of the job), or equivalently, in every feasible schedule, the difference of the completion time of each original job compared to that in the pre-schedule does not exceed its maximum allowable time disruption. We also consider a stronger restriction which additionally requires that, in a feasible schedule, the starting time of each original job is not allowed to be scheduled smaller than that in the pre-schedule. Scheduling objectives to be minimized are the maximum lateness and the total completion time, respectively, and the pre-schedules of original jobs are given by EDD-schedule and SPT-schedule, respectively. Then we have four problems for consideration. For the two problems for minimizing the maximum lateness, we present strong NP-hardness proof, provide a simple 2-approximation polynomial-time algorithm, and show that, unless \(\text {P}= \text {NP}\), the two problems cannot have an approximation polynomial-time algorithm with a performance ratio less than 2. For the two problems for minimizing the total completion time, we present strong NP-hardness proof, provide a simple heuristic algorithm, and show that, unless \(\text {P}= \text {NP}\), the two problems cannot have an approximation polynomial-time algorithm with a performance ratio less than 4/3. Moreover, by relaxing the maximum allowable time disruptions of the original jobs, we present a super-optimal dual-approximation polynomial-time algorithm. As a consequence, if the maximum allowable time disruption of each original job is at least its processing time, then the two problems for minimizing the total completion time are solvable in polynomial time. Finally, we show that, under the agreeability assumption (i.e., the nondecreasing order of the maximum allowable time disruptions of the original jobs coincides with their scheduling order in the pre-schedule), the four problems in consideration are solvable in polynomial time.  相似文献   

17.
A new scheduling model in which both two-agent and increasing linear deterioration exist simultaneously is investigated in this paper. The processing time of a job is defined as an increasing linear function of its starting time. Two agents compete to perform their respective jobs on a common single machine and each agent has his own criterion to optimize. We introduce an increasing linear deterioration model into the two-agent single-machine scheduling, where the goal is to minimize the objective function of the first agent with the restriction that the objective function of the second agent cannot exceed a given upper bound. We study two scheduling problems with the different combinations of two agents’ objective functions: makespan, maximum lateness, maximum cost and total completion time. We propose the optimal properties and present the optimal polynomial time algorithms to solve the scheduling problems, respectively.  相似文献   

18.
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimise the makespan, provided that preemption is not allowed and the interstage transportation times are involved. In general, this problem is known to be NP-hard. We present a linear time algorithm that finds an optimal schedule if no transportation time exceeds the smallest of the processing times. We also describe an algorithm that creates a heuristic solution to the problem with job-independent transportation times. Our algorithm provides a worst-case performance ratio of 8/5 if the transportation time of a job depends on the assigned processing route. The ratio reduces to 3/2 if all transportation times are equal.  相似文献   

19.
We consider a scheduling problem where the firm must compete with other firms to win future jobs. Uncertainty arises as a result of incomplete information about whether the firm will win future jobs at the time the firm must create a predictive (planned) schedule. In the predictive schedule, the firm must determine the amount of planned idle time for uncertain jobs and their positions in the schedule. When the planned idle time does not match the actual requirements, certain schedule disruptions occur. The firm seeks to minimize the sum of expected tardiness cost, schedule disruption cost, and wasted idle time cost. For the special case of a single uncertain job, we provide a simple algorithm for the optimal planned idle time and the best reactive method for schedule disruptions. For the case of multiple uncertain jobs, a heuristic dynamic programming approach is presented.  相似文献   

20.
We study single machine scheduling problems with linear time-dependent deterioration effects and maintenance activities. Maintenance periods (MPs) are included into the schedule, so that the machine, that gets worse during the processing, can be restored to a better state. We deal with a job-independent version of the deterioration effects, that is, all jobs share a common deterioration rate. However, we introduce a novel extension to such models and allow the deterioration rates to change after every MP. We study several versions of this generalized problem and design a range of polynomial-time solution algorithms that enable the decision-maker to determine possible sequences of jobs and MPs in the schedule, so that the makespan objective can be minimized. We show that all problems reduce to a linear assignment problem with a product matrix and can be solved by methods very similar to those used for solving problems with positional effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号