首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
We study the correction-to-scaling exponents for the two-dimensional self-avoiding walk, using a combination of series-extrapolation and Monte Carlo methods. We enumerate all self-avoiding walks up to 59 steps on the square lattice, and up to 40 steps on the triangular lattice, measuring the mean-square end-to-end distance, the mean-square radius of gyration and the mean-square distance of a monomer from the endpoints. The complete endpoint distribution is also calculated for self-avoiding walks up to 32 steps (square) and up to 22 steps (triangular). We also generate self-avoiding walks on the square lattice by Monte Carlo, using the pivot algorithm, obtaining the mean-square radii to ≈ 0.01% accuracy up to N=4000. We give compelling evidence that the first non-analytic correction term for two-dimensional self-avoiding walks is Δ1=3/2. We compute several moments of the endpoint distribution function, finding good agreement with the field-theoretic predictions. Finally, we study a particular invariant ratio that can be shown, by conformal-field-theory arguments, to vanish asymptotically, and we find the cancellation of the leading analytic correction.  相似文献   

2.
《Physics letters. A》1988,128(9):463-469
On the basis of a recently developed lattice model for ensembles of random loops which contains a parameter interpolating between self-avoiding and Ising-like loops, we calculate the average length and the length fluctuations of self-avoiding loops in three dimensions, using analytic as well as Monte Carlo methods, and compare the results with the Ising case. Applying finite-size scaling techniques, we show that the critical behavior of self-avoiding random loops is consistent with universality predictions based on the Ising model.  相似文献   

3.
We present an algorithm, based on the iteration of conformal maps, that produces independent samples of self-avoiding paths in the plane. It is a discrete process approximating radial Schramm-Loewner evolution growing to infinity. We focus on the problem of reproducing the parametrization corresponding to that of lattice models, namely self-avoiding walks on the lattice, and we propose a strategy that gives rise to discrete paths where consecutive points lie an approximately constant distance apart from each other. This new method allows us to tackle two non-trivial features of self-avoiding walks that critically depend on the parametrization: the asphericity of a portion of chain and the correction-to-scaling exponent.  相似文献   

4.
We present an algorithm, based on the iteration of conformal maps, that produces independent samples of self-avoiding paths in the plane. It is a discrete process approximating radial Schramm-Loewner evolution growing to infinity. We focus on the problem of reproducing the parametrization corresponding to that of lattice models, namely self-avoiding walks on the lattice, and we propose a strategy that gives rise to discrete paths where consecutive points lie an approximately constant distance apart from each other. This new method allows us to tackle two non-trivial features of self-avoiding walks that critically depend on the parametrization: the asphericity of a portion of chain and the correction-to-scaling exponent.  相似文献   

5.
We study the distribution of the end-to-end distance of continuous-time self-avoiding random walks (CTRW) in dimension four from two viewpoints. From a real-space renormalization-group map on probabilities, we conjecture the asymptotic behavior of the end-to-end distance of a weakly self-avoiding random walk (SARW) that penalizes two-body interactions of random walks in dimension four on a hierarchical lattice. Then we perform the Monte Carlo computer simulations of CTRW on the four-dimensional integer lattice, paying special attention to the difference in statistical behavior of the CTRW compared with the discrete-time random walks. In this framework, we verify the result already predicted by the renormalization-group method and provide new results related to enumeration of self-avoiding random walks and calculation of the mean square end-to-end distance and gyration radius of continous-time self-avoiding random walks.  相似文献   

6.
Based on transfer matrix techniques and finite-size scaling, we study the oriented polymer (self-avoiding walk) with nearest neighbor interaction. In the repulsive regime, various critical exponents are computed and compared with exact values predicted recently. The polymer is also found to undergo a spiral transition for sufficiently strong attractive interaction. The fractal dimension of the polymer is computed in the repulsive and attractive regimes and at the spiral transition point. The later is found to be different from that at the collapse transition of the ordinary self-avoiding walk.  相似文献   

7.
郑大昉  林志方  陶瑞宝 《物理学报》1989,38(7):1140-1045
本文考虑在Sierpinski gasket及分支Koch曲线上的自迴避迹行走,运用实空间重整化群技术求出了相应的关联长度临界指数ν。结果表明,在Sierpinski gasket上,自迴避迹行走与自迴避行走属同一普适类;而在较高分枝度(Rmax>3)的Koch曲线上,两者属不同普适类。 关键词:  相似文献   

8.
The pivot algorithm for self-avoiding walks has been implemented in a manner which is dramatically faster than previous implementations, enabling extremely long walks to be efficiently simulated. We explicitly describe the data structures and algorithms used, and provide a heuristic argument that the mean time per attempted pivot for N-step self-avoiding walks is O(1) for the square and simple cubic lattices. Numerical experiments conducted for self-avoiding walks with up to 268 million steps are consistent with o(log N) behavior for the square lattice and O(log N) behavior for the simple cubic lattice. Our method can be adapted to other models of polymers with short-range interactions, on the lattice or in the continuum, and hence promises to be widely useful.  相似文献   

9.
The conjecture that the scaling limit of the two-dimensional self-avoiding walk (SAW) in a half plane is given by the stochastic Loewner evolution (SLE) with kappa = 8/3 leads to explicit predictions about the SAW. A remarkable feature of these predictions is that they yield not just critical exponents but also probability distributions for certain random variables associated with the self-avoiding walk. We test two of these predictions with Monte Carlo simulations and find excellent agreement, thus providing numerical support to the conjecture that the scaling limit of the SAW is SLE(8/3).  相似文献   

10.
The scaling properties of self-avoiding tethered membranes at the tricritical point (Θ-point) are studied by perturbative renormalization group methods. To treat the 3-body repulsive interaction (known to be relevant for polymers), new analytical and numerical tools are developed and applied to 1-loop calculations. These techniques are a prerequisite to higher-order calculations for self-avoiding membranes. The crossover between the 3-body interaction and the modified 2-body interaction, attractive at long range, is studied through a new double ε-expansion. It is shown that the latter interaction is relevant for 2-dimensional membranes at the Θ-point.  相似文献   

11.
It is proved that every dynamic Monte Carlo algorithm for the self-avoiding walk based on a finite repertoire of local,N-conserving elementary moves is nonergodic (hereN is the number of bonds in the walk). Indeed, for largeN, each ergodic class forms an exponentially small fraction of the whole space. This invalidates (at least in principle) the use of the Verdier-Stockmayer algorithm and its generalizations for high-precision Monte Carlo studies of the self-avoiding walk.  相似文献   

12.
《Nuclear Physics B》1998,528(3):533-552
We have extended the enumeration of self-avoiding walks on the Manhattan lattice from 28 to 53 steps and for self-avoiding polygons from 48 to 84 steps. Analysis of this data suggests that the walk generating function exponent γ = 1.3385 ± 0.003, which is different from the corresponding exponent on the square, triangular and honeycomb lattices. This provides numerical support for an argument recently advanced by Cardy, to the effect that excluding walks with parallel nearest-neighbour steps should cause a change in the exponent γ. The lattice topology of the Manhattan lattice precludes such parallel steps.  相似文献   

13.
The large-scale behavior of surface-interacting self-avoiding polymer chains placed on finitely ramified fractal lattices is studied using exact recursion relations. It is shown how to obtain surface susceptibility critical indices and how to modify a scaling relation for these indices in the case of fractal lattices. We present the exact results for critical exponents at the point of adsorption transition for polymer chains situated on a class of Sierpinski gasket-type fractals. We provide numerical evidence for a critical behavior of the type found recently in the case of bulk self-avoiding random walks at the fractal to Euclidean crossover.  相似文献   

14.
Using the fractal-cell generation method we perform a numerical simulation study for partially directed self-avoiding walks (PDSAW) on Sierpinski carpets. The obtained critical exponents vH is found to be independent of the fractal dimension of Sierpinski carpet df, but v is dependent on df . This result indicates that PDSAW on different Sierpinski carpets belong to different universality classes. Compared with the fully directed self-avoiding walks (FDSAW) on the same carpets, the obtained results indicate that PDSAW and FDSAW belong to the same universality class.  相似文献   

15.
The nearest neighbor contacts between the two halves of an N-site lattice self-avoiding walk offer an unusual example of scaling random geometry: for N-->infinity they are strictly finite in number but their radius of gyration R(c) is power law distributed proportional to R(-tau)(c), where tau>1 is a novel exponent characterizing universal behavior. A continuum of diverging length scales is associated with the R(c) distribution. A possibly superuniversal tau = 2 is also expected for the contacts of a self-avoiding or random walk with a confining wall.  相似文献   

16.
A Monte Carlo simulation was performed for loop-erased self-avoiding walks (LESAW) to ascertain the exponentv for the Z2 and Z3 lattices. The estimated values were 2v=1.600±0.006 in two dimensions and 2v=1.232±0.008 in three dimensions, leading to the conjecturev=4/5 for the two-dimensional LESAW. These results add to existing evidence that the loop-erased self-avoiding walks are not in the same universality class as self-avoiding walks.  相似文献   

17.
Absence of mass gap for a class of stochastic contour models   总被引:1,自引:0,他引:1  
We study a class of Markovian stochastic processes in which the state space is a space of lattice contours and the elementary motions are local deformations. We show, under suitable hypotheses on the jump rates, that the infinitesimal generator has zero mass gap. This result covers (among others) the BFACF dynamics for fixed-endpoint self-avoiding walks and the Sterling-Greensite dynamics for fixed-boundary self-avoiding surfaces. Our models also mimic the Glauber dynamics for the low-temperature Ising model. The proofs are based on two new general principles: the minimum hitting-time argument and the mean (or mean-exponential) hitting-time argument.  相似文献   

18.
In this paper we investigate the problem of a long self-avoiding polymer chain immersed in a random medium. We find that in the limit of a very long chain and when the self-avoiding interaction is weak, the conformation of the chain consists of many “blobs” with connecting segments. The blobs are sections of the molecule curled up in regions of low potential in the case of a Gaussian distributed random potential or in regions of relatively low density of obstacles in the case of randomly distributed hard obstacles. We find that as the strength of the self-avoiding interaction is increased the chain undergoes a delocalization transition in the sense that the appropriate free energy per monomer is no longer negative. The chain is then no longer bound to a particular location in the medium but can easily wander around under the influence of a small perturbation. For a localized chain we estimate quantitatively the expected number of monomers in the “blobs” and in the connecting segments. Received 13 November 2002 Published online 14 March 2003  相似文献   

19.
A transfer matrix method for treating self-avoiding walks on a lattice is developed. Single walks confined to infinitely long strips, cylinders, or tubes are considered, particularly in the limit where the length of the walk becomes infinite compared to the transverse dimensions. In this case relevant distributions are demonstrated to be asymptotically Gaussian. Explicit numerical results are given for a few of the narrower systems. Similar results for self-avoiding cycles are indicated, too. Finally, the behavior of the various distributions as a function of strip width is discussed.Supported by the Robert A. Welch Foundation, Houston, Texas.  相似文献   

20.
The conformation of circular DNA molecules of various lengths adsorbed in a 2D conformation on a mica surface is studied. The results confirm the conjecture that the critical exponent nu is topologically invariant and equal to the self-avoiding walk value (in the present case nu=3/4), and that the topology and dimensionality of the system strongly influence the crossover between the rigid regime and the self-avoiding regime at a scale L approximately 7l{p}. Additionally, the bond correlation function scales with the molecular length L as predicted. For molecular lengths L相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号