首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quinone reductase enzyme NAD(P)H: quinone oxidoreductase 1 (NQO1) is a ubiquitous flavoenzyme that catalyzes the two-electron reduction of quinones. This Perspective briefly reviews the structure and mechanism, physiological role, and upregulation and induction of the enzyme, but focuses on the synthesis of new heterocyclic quinones and their metabolism by recombinant human NQO1. Thus a range of indolequinones, some of which are novel analogues of mitomycin C, benzimidazolequinones, benzothiazolequinones and quinolinequinones have been prepared and evaluated, leading to detailed knowledge of the structural requirements for efficient metabolism by the enzyme. Potent mechanism-based inhibitors (suicide substrates) of NQO1 have also been developed. These indolequinones irreversibly alkylate the protein, preventing its function both in standard enzyme assays and also in cells. Some of these quinones are also potent inhibitors of growth of human pancreatic cancer cells, suggesting a potential role for such compounds as therapeutic agents.  相似文献   

2.
A series of indolequinones bearing a range of substituents at the (indol-2-yl)methyl position has been synthesized. The ability of these indolequinones to act as substrates for recombinant human NAD(P)H:quinone oxidoreductase (NQO1), a two-electron reductase upregulated in tumour cells, was determined, along with their toxicity to an isogenic tumour cell line pair that is differentiated as either NQO1-expressing cells (BE-NQ) or NQO1-null cells (BE-WT). Overall, the 2-substituted indolequinones were relatively poor substrates for NQO1. Hydroxymethyl groups at C-2 led to higher rates of reduction, a finding that was observed previously with 3-hydroxymethylated indolequinones. Predictably, the best substrate had an electron-withdrawing ester group at the indole-2-position. The indolequinones were generally non-toxic to both cell lines with the exception of those quinones that had methylaziridine groups at the indole-5-position. These compounds could form DNA cross-links when activated by reduction and were up to 3-fold more toxic to the BE-NQ cells than the BE-WT cells.  相似文献   

3.
Natural quinones, often linked with cellular oxidation processes, exhibit pronounced biological activity. In particular, the structurally unique isothiazolonaphthoquinone aulosirazole, isolated from blue‐green alga, possesses selective antitumor cytotoxicity, although its mechanism of action is unknown. The first synthesis of aulosirazole uses a route centered upon a late‐stage regioselective Diels–Alder reaction. The structurally related natural product pronqodine A, an inhibitor of prostaglandin release, and analogues thereof, were also prepared for comparison. Biological evaluation of the compounds identified one potential target as the immunoregulatory enzyme indoleamine‐2,3‐dioxygenase (IDO). The isothiazoloquinones are also efficient substrates for the human quinone reductase NQO1, and undergo intracellular NQO1‐dependent redox cycling resulting in the generation of reactive oxygen species, and at lower doses have the potential to alter the ratio of intracellular oxidized to reduced pyridine nucleotides.  相似文献   

4.
NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of −8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.  相似文献   

5.
Some quinone oxidoreductases exhibit negative cooperativity towards inhibitors. In human NQO1, this is mediated by flexibility around glycine‐150. Here we investigated the eubacterial orthologue, Modulator of Drug Activity B (MdaB) to determine if it shows cooperativity towards substrates or inhibitors and to investigate molecular recognition of the inhibitor, dicoumarol. Like human NQO1, MdaB did not show cooperativity towards substrates. However, unlike NQO1, it was only weakly inhibited by dicoumarol. Alanine‐127 in MdaB is the structurally equivalent residue to Gly‐150 in human NQO1. With the intention of increasing protein flexibility in MdaB, this alanine was altered to glycine. This change did not increase cooperativity towards inhibitors or NADPH. Based on structural alignment to NQO1 in complex with dicoumarol, an asparagine in the active site was changed to alanine to reduce steric hindrance. This change resulted in enhanced inhibition by dicoumarol, but the inhibition was not cooperative. Both changes were then introduced simultaneously. However, the additional increase in flexibility afforded by the change to glycine did not enable negative cooperativity towards dicoumarol. These results have implications for the evolution of quinone oxidoreductases and their potential use as biocatalysts.  相似文献   

6.
Short-chain quinones (SCQs) have been investigated as potential therapeutic candidates against mitochondrial dysfunction, which was largely thought to be associated with the reversible redox characteristics of their active quinone core. We recently reported a library of SCQs, some of which showed potent cytoprotective activity against the mitochondrial complex I inhibitor rotenone in the human hepatocarcinoma cell line HepG2. To better characterize the cytoprotection of SCQs at a molecular level, a bioactivity profile for 103 SCQs with different compound chemistries was generated that included metabolism related markers, redox activity, expression of cytoprotective proteins and oxidative damage. Of all the tested endpoints, a positive correlation with cytoprotection by SCQs in the presence of rotenone was only observed for the NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent reduction of SCQs, which also correlated with an acute rescue of ATP levels. The results of this study suggest an unexpected mode of action for SCQs that appears to involve a modification of NQO1-dependent signaling rather than a protective effect by the reduced quinone itself. This finding presents a new selection strategy to identify and develop the most promising compounds towards their clinical use.  相似文献   

7.
8.
[reaction: see text] 2-Indolylacyl radicals generated from the corresponding selenoesters under hexabutylditin-hnu conditions undergo regioselective intramolecular reaction with unprotonated pyridines to give polycyclic indolylpyridyl ketones. For substrates bearing a (3-pyridyl)methyl moiety connected to the 3-position of the indole ring, the cyclization provides easy access to ellipticine quinones.  相似文献   

9.
A generally applicable direct synthesis of cyanoarenes from quinones is presented. Particular emphasis is placed on the preparation of precursors and target molecules relevant for organic materials, including halogenated cyanoarenes and larger cyanated acenes. The reaction and work‐up protocols are adjusted for the challenges presented by the different substrates and products. Screening results of the initial reaction optimization are given to further facilitate adaptation to other synthetic problems. The universality of the reaction is finally highlighted by successful substitution of para‐quinones by an ortho‐quinone as the starting material.  相似文献   

10.
The pH effects on the photochemical reaction of amino acids and related dipeptides with 4-nitroquinoline 1-oxide (4NQO) as a photosensitizer have been investigated by laser flash photolysis. The obtained kinetic parameters show that the electron transfer from Tryptophan (Trp), Tyrosine (Tyr) as well as dipeptides containing Trp and/or Tyr residue to triplet 4NQO (T4NQO) are efficient, but inefficient from methionine (Met) and dipeptides containing neither Trp nor Tyr. The result was supported by the calculated values of the free energy change from measured oxidation potentials for the electron transfer. It was demonstrated that Trp and Tyr residues are initial reaction sites with T4NQO, while Tyr/O? radical may be final species for Trp-Tyr dipeptide. In acidic aqueous solutions, the self-quenching rate constants of T4NQO and the rate constants of electron transfer from amino acids to T4NQO decrease with decreasing pH. In alkaline solutions, amino acids are easily oxidized by 4NQO under irradiation of laser pulse, and no transient absorption signal was observed.  相似文献   

11.
Laser flash photolysis and an external magnetic field have been used for the study of the interaction of 4-nitroquinoline-1-oxide (4NQO) with some indole derivatives, amino acids, tyrosine and tryptophan, and model proteins, lysozyme and bovine serum albumin. In an aprotic medium, photoinduced electron transfer (PET) from indoles to 4NQO is accompanied by proton transfer from the indole moieties irrespective of the substitution at the N-1 position. For 1,2-dimethylindole, however, proton abstraction is hindered possibly due to steric effects. In a protic medium, obviously proton transfer is possible from the medium and is the dominating reaction following PET. The effect of an external magnetic field is very small for all the systems studied. This is attributed to a competition between geminate proton abstraction by the 4NQO radical anion from the partner radical cation and escape of the 4NQO radical anion to the medium followed by proton transfer. The latter process is more predominant, and the former one, which produces a small population of geminate spin-correlated radical pairs, leads to a minor field effect. Another interesting observation is the affinity of 4NQO toward the tryptophan residues in a protein environment. It is seen that PET takes place preferably from the tryptophan residues rather than from the tyrosine residues.  相似文献   

12.
13.
A direct functionalization of a variety of quinones with several boronic acids has been developed. This scalable reaction proceeds readily at room temperature in an open flask using inexpensive reagents: catalytic silver(I) nitrate in the presence of a persulfate co-oxidant. The scope with respect to quinones is broad, with a variety of alkyl- and arylboronic acids undergoing efficient cross-coupling. The mechanism is presumed to proceed through a nucleophilic radical addition to the quinone with in situ reoxidation of the resulting dihydroquinone. This method has been applied to complex substrates, including a steroid derivative and a farnesyl natural product.  相似文献   

14.
《中国化学》2018,36(4):333-337
A carbene‐catalyzed ester activation reaction for the synthesis of multi‐substituted benzenes is developed. Tetra‐substituted benzene compounds are efficiently synthesized through this methodology. Compared with aldehyde substrates used in previous reports, the ester substrates used here are much more readily available and inexpensive. In addition, the TEMPO oxidant used here is more inexpensive than the quinones commonly used in related carbene‐catalyzed reactions.  相似文献   

15.
NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase) is a prognostic biomarker and a potential therapeutic target for various tumors. Therefore, it is of significance to develop a robust method for the absolute quantification of NQO1. This study aimed to develop and validate a LC–MS/MS based method and to test the appropriateness of using non-isotopic analog peptide as the internal standard (IS) by comparing with a stable isotope labeled (SIL) peptide. The chromatographic performance and mass spectra between the selected signature peptide of NQO1 and the non-isotopic peptide were observed to be very similar. The use of the two internal standards was validated appropriate for the absolute quantification of NQO1, as evidenced by satisfactory validation results over a concentration range of 1.62–162 fmol μL−1. This method has been successfully applied to the absolute quantification of NQO1 expression in various tumor cell lines and tissues. NQO1 expression in human tumor tissues is much higher than that in the neighboring normal tissues in both the cases of lung and colon cancer. The quantitative results obtained from the isotopic and non-isotopic methods are quite similar, further supporting that the use of non-isotopic analog peptide as internal standard is appropriate and feasible for the quantification of NQO1. By comparing with a classical isotopic IS, the present study indicates that the use of a non-isotopic peptide analog to the proteotypic peptide as the internal standard can get equal accuracy and preciseness in measuring NQO1. The universal applicability of the non-isotopic IS approach for the quantification of proteins warrants further research.  相似文献   

16.
Both quinones and cyanide can be determined in the μg—ng ml-1 range by measuring the fluorescence of the addition products produced. The yield is low (except for the 2-sulfonic acid of 1,4-naphthoquinone) in aqueous solution and 1:1 DMSO:water is the recommended medium for determinations of quinones. The 2-sulfonic acid of 1,4-naphthoquinone permits the determination of trace amounts of cyanide in aqueous solution; there are few interferences.  相似文献   

17.
The reaction of 1:1 zwitterionic intermediate generated in situ from dimethyl acetylenedicarboxylate (DMAD) and cyclohexyl isocyanide with aldehydes and quinones is described. The reaction of stoichiometric amounts of DMAD, isocyanide and aldehydes afforded 2-aminofurans in good yields, while the reaction with quinones gave iminolactones.  相似文献   

18.
Dehydrogenation of hydroaromatic compounds with quinones was reinvestigated in the light of recent criticism of the reaction mechanism. Kinetic and spectroscopic evidence shows that disappearance of substrate proceeds at the same rate as the product-forming step. A mechanism consisting in fast formation followed by slow decomposition of an intermediate can be ruled out. The order of reactivities of 1,4-cyclohexadiene ( 1 ), 1,4-dihydronaphthalene ( 8 ) and 9,10-dihydroanthracene ( 11 ) changes in going from benzoquinone to chloranil or 2,3-dichloro-5,6-dicyanobenzoquinone. It is suggested that this behaviour could be due to contribution of CT-complexes or HOMO-LUMO interactions for determining the reactivity of the substrates.  相似文献   

19.
Novel heteroquaterphenoquinones, 5,5'-bis(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-5,5'-dihydro-2,2'-bithienyl (3) and its 2,2'-biselenienyl (4), 2,2'-bifuryl (5), and 2,2'-bi-N-methylpyrrolyl (6) analogues, were synthesized by a stepwise cross-coupling reaction or by a more convenient one-pot oxidative homocoupling reaction of heterocycle-substituted phenols. Despite a highly conjugation-extended system, the quinones 3-6 are very stable in the solid state and in solution in common organic solvents. These quinones undergo a reversible one-stage, two-electron reduction up to dianions and a two-stage, one-electron oxidation reaction up to dications. The E(1)(red) of these quinones increases with the increase in the aromaticity of the incorporated heterocycles. The E(1)(ox) of these quinones appears to be specified by the ionization potential of the incorporated heterocycles. Thus, the N-methylquinone 6 exhibiting the lowest E(1)(ox) value exhibits the smallest E(1)(sum) among the quinones 3-6. The quinone 5 was revealed to exist in an unusual O-cis conformation in the solid state by X-ray crystallography, whereas the quinone 3 exists in an S-trans conformation in the solid state. The cis and trans isomers are interconvertible in solution in 3-5, whereas only N-trans isomer was detected for 6 in (1)H NMR spectroscopy. The quinones 3-6 exhibit a very intense absorption maximum in the near-infrared region of 662-827 nm. Of these, the maximum absorption wave length of 6 shifts to a more bathochromic region by 149-165 nm than those of 3-5. The quinones 3-6 can be used as dyestuffs in various fields for laser-driven high-density optical storage media.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号