首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A method for the automated sample conversion and on-line oxygen isotope ratio (delta(18)O) determination for organic and inorganic substances is presented. The samples are pyrolytically decomposed at 1400 degrees C in the presence of nickelized graphite. With the system presented organic as well as inorganic samples such as nitrates, sulphates and phosphates of 50-100 &mgr;g O can be analyzed for their delta(18)O values with a standard deviation usually better than 0.5 per thousand. Additionally, carbon isotope ratios of organic substances and nitrogen isotope ratios of inorganic nitrogenous compounds are available in the same sample run. Data for international and some inter-laboratory reference materials are presented to show the accuracy and reliability of the method. The effect of some additives on the CO yield was checked for substances which do not pyrolyze completely. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6% and 0.2% in deltaD and delta18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water deltaD and delta18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of > or = 5 degrees C as calculated using the adiabatic lapse rate. Since the deltaD and delta18O values of stem and leaf water varied little for these trees over this elevation/temperature transect, any differences in tree-ring cellulose deltaD and delta18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the deltaD and delta18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.  相似文献   

4.
We determined vertical oxygen isotope gradients of leaf organic matter for a grassland in Switzerland and a mountain beech forest (Fagus sylvatica) in Northern Italy. A distinctly positive (18)O/(16)O gradient with height above ground was found for the grassland (7.9/1000 m(-1), p < 0.001), whereas the gradient was negative for the forest (-0.077/1000 m(-1), p < 0.001). The results are consistent with microclimatic measurements, although large isotope variations between the species have to be taken into account for the grassland. A conceptual scheme is shown which relates the isotope enrichment to the canopy density, considering the effects of transpiration and canopy structure. We conclude that the analysis of the within canopy variation in delta(18)O of organic matter can be used to provide long-term estimates of leaf water isotope composition, thus improving existing isotope methods to determine the gas-exchange between vegetation and atmosphere.  相似文献   

5.
Abstract

The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6‰ and 0.2‰ in δD and δ18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water δD and δ18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of ≥ 5°C as calculated using the adiabatic lapse rate. Since the δD and δ18O values of stem and leaf water varied little for these trees over this elevation/ temperature transect, any differences in tree-ring cellulose δD and δ18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the δD and δ18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.  相似文献   

6.
Current methods for stable oxygen isotopic (delta (18)O) analysis of soil water rely on separation of water from the soil matrix before analysis. These separation procedures are not only time consuming and require relatively large samples of soil, but also have been shown to introduce a large potential source of error. Current research at Queen's University Belfast is focused on using direct equilibration of CO(2) with the pore water to eliminate this extraction step using the automated Multiprep system and a Micromass Prism III isotope ratio mass spectrometer (IRMS). The findings of this research indicate the method is less time consuming, more reliable, and reproducible to within accepted limits (+/-0.1% per thousand delta (18)O). In this study the direct equilibration method is used to analyse delta (18)O tracer profiles in the unsaturated zone of field soils, concurrently with chloride tracer profiles, which can be used to assess infiltration rates and mechanisms through the unsaturated zone. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Oxygen and carbon isotopic compositions of tree ring cellulose (delta13Ccell and delta18Ocell) were measured for pines growing at four sites in east Germany. Three sites differed markedly in soil water availability within a short distance and the fourth site served as a reference. The choice of the sites was guided by the desire to detect effects of air pollution on the long-term trend of isotopic compositions and to examine the influence of soil water availability on the relationship between the carbon and oxygen isotope ratios. Locations in east Germany are particularly well suited for the study of pollution effects because there was a steady increase in environmental contamination until the German Reunification in 1990, followed by a sharp decline due to the implementation of stricter environmental standards. The long-term trend of delta13Ccell showed an extraordinary increase in the period 1945-1990 and a rapid decrease after 1990, whereas delta18Ocell remained nearly constant. The increase of delta13Ccell is explained by secondary fractionation caused by phytotoxicity of SO2. Two effects are mainly responsible for the secondary fractionation under SO2 exposure: increase of dark respiration, and changes in photosynthate allocation and partitioning. Both effects do not influence delta18Ocell. Furthermore, a significant positive correlation between the year-to-year variations of carbon and oxygen isotope ratios (delta13Cresid and delta18Oresid) has been found for all sites. The slopes of the relationship between delta13Cresid and delta18Oresid differ insignificantly. It is concluded that this relationship is not influenced by soil water availability but by climatic variables.  相似文献   

8.
The delta13C and SD values of newly emerging to senescing tree leaves produced during a rainy season were obtained in dry seasonal and moist forest in Panamá. Newly emerging leaves had less negative delta13C values than older leaves yet instantaneous pi/pa was never lowest in the youngest leaves. Furthermore, isotopic enrichment during early growth may have a detectable influence on the delta13C values of mature leaves. The deltaD values of cellulose nitrate were only related to deltaD values of leaf water if leaf age was also considered so that, for a given deltaD of leaf water, deltaD values were highest in the youngest leaves (R2 = 98%). There was no correlation between leaf age and deltaD values of leaf water. Investment of translocated organic carbon is a factor likely to be associated with both 13C and deuterium enrichment effects in new leaves. A coarse, mass balance approach can estimate the proportional heterotrophic investment in leaf growth and improve estimates of integrated pi/pa by approximating delta13C for the most autotrophic phase of leaf growth. Delta13C values of the predominantly sucrose mobile organic fraction in new leaves were less negative than in older leaves, thereby suggesting that the enrichment did not occur at the original site of production of the substrate for new leaf growth. Although the delta values of early leaf growth must be influenced by inputs of translocated organic carbon, enrichment effects, per se, are apparently caused by other mechanisms such as, for carbon, de novo sucrose synthesis and anaplerotic replenishment. Better recognition of metabolic causes of isotopic enrichment in leaves promises to increase the power and accuracy of inferences about carbon and water use of tropical trees from delta analyses.  相似文献   

9.
Natural variations in the oxygen isotope ratio 18O/16O are occurring in the hydrological cycle as a result of isotope fractionations during evaporation and condensation. These processes imprint a valuable climatic signal in the precipitation, which is stored in ice caps as well as in the cellulose of trees. Recent developments in the continuous-flow analysis of 18O/16O of organic matter now enable a systematic application of this method in tree rings. It becomes possible to build maps of the past oxygen isotope distribution in continental areas, yielding important information on regional climate changes. In this paper, the factors influencing the isotope composition of tree rings are discussed with an example from trees in northern Eurasia. Oxygen isotope values of Larix, Picea and Pinus trees were measured over a large climatic gradient extending from Norway to Siberia. The spatial isotope variations were highly correlated to the annual mean temperature (r2 = 0.84), whereby the slope of the corresponding regression line was 0.35%/degrees C. When considering the changes in 18O/16O during the 20th century, not only the temperature, but also changes in the precipitation patterns have to be considered, in particular the observed increase in the amount of winter precipitation.  相似文献   

10.
The H(2)(16)O/H(2)(18)O solvent-induced isotope shifts ((18)O SIIS) of the (19)F NMR signals of a number of fluorine compounds have been measured. These isotope shifts are observed to be upfield, downfield, or zero, depending on the specific compound and the precise solution conditions. At 25 degrees C and with an (18)O enrichment of 86%, the (18)O SIIS of several fluorinated amino acids were in the range of 0.0014-0.0018 ppm downfield. 5-Fluorouridine displays a significantly wider range of (18)O SIIS values. A 5-fluorouridine-labeled 16-mer RNA also displayed observable (18)O SIIS values, but the characteristics of these were significantly modified from those of free 5-fluorouridine. The experimental observations are consistent with the (18)O SIIS being composed of upfield and downfield components, with the relative contributions of these determining the size and direction of the overall isotope shift. This is discussed in terms of a combination of van der Waals interactions between the fluorine atom and the solvent, electrical and hydrogen bonding effects, and the perturbations to these due to (18)O substitution in the solvent water. This isotope effect promises to be a highly useful tool in a range of (19)F NMR studies.  相似文献   

11.
The study presents first data on the delta(18)O performance of poikilohydrous lichen ground cover, and its potential impact on the isotopic composition of water fluxes arising from subjacent soil layers. As a model organism, the globally distributed lichen Cladina arbuscula was studied under laboratory conditions as well as in the field. During a desiccation experiment, delta(18)O of the lichen's thallus water and of its respired CO(2) became enriched by approximately 7 per thousand and followed a similar enrichment pattern to that expected from homoiohydrous, vascular plants. However, the observed degree of enrichment was lower in comparison to vascular plants due to (i) the lichen's inherent lower evaporative resistances; and (ii) a stronger effect of the more depleted surrounding water vapour. In lichens growing in their natural habitat, this specific pattern may show substantial variations depending on prevailing microclimatic conditions. Within a field study, thallus water delta(18)O of lichens principally proved to become more depleted when close to equilibration with the surroundings. It thereby strongly depended on the absorption of surrounding water vapour. Moreover, the results indicate that lichen mats substantially reduce evaporation rates arising from subjacent soil layers, and may alter the isotopic signal of vapour diffusing away from these layers into more depleted values.  相似文献   

12.
The stable isotope composition of hydrogen (delta(2)H) and oxygen (delta(18)O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line delta(2)H=7.8 (+/-0.2) delta(18)O+7.3(+/-1.6) (r(2)=0.98, n=60, sigma=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean delta(2)H and delta(18)O values of precipitation were-65+/-27 per thousand and-9.4+/-3.4 per thousand, respectively. Good correlation between delta(18)O values (r approximately >0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from-94 to-60 per thousand for delta(2)H and from-11.0 to approximately 5.7 per thousand for delta(18)O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

13.
Stable hydrogen and oxygen isotopes were analysed in water samples from the River Danube and its tributaries during a longitudinal survey performed in August 2005 on Serbian territory. Danube river water data ranged from-80 per thousand to-66 per thousand for delta2H, and from-11.2 per thousand to-9.3 per thousand for delta18O with delta values increasing downstream. The isotopic signatures of the adjacent tributaries (the Tisza, the Sava and the Velika Morava) sampled at the locations close to their confluence with the Danube (Titel, Ostruznica and Ljubicevski most, respectively) just about the time of the campaign were enriched (-67 per thousand and-63 per thousand for delta2H, and-9.3 per thousand and-8.9 per thousand for delta18O) with respect to the Danube water because of their catchment effects. Hydrogen and oxygen stable isotope values were used in combination with measured physico-chemical and biological parameters to trace hydrological and transport processes in these river systems. The mixing relationships between the Danube main stream and its tributaries were estimated using the mass balance for isotopic composition and electrical conductivity as conservative parameters. Evidence of an incomplete mixing process at the Centa location, 8 km below the confluence of the Tisza river, with its participation of 88% was shown by its oxygen-18 content. The correlations between river water isotope composition and physico-chemical and biological parameters are discussed.  相似文献   

14.

Natural variations in the oxygen isotope ratio 18O/16O are occurring in the hydrological cycle as a result of isotope fractionations during evaporation and condensation. These processes imprint a valuable climatic signal in the precipitation, which is stored in ice caps as well as in the cellulose of trees. Recent developments in the continuous-flow analysis of 18O/16O of organic matter now enable a systematic application of this method in tree rings. It becomes possible to build maps of the past oxygen isotope distribution in continental areas, yielding important information on regional climate changes. In this paper, the factors influencing the isotope composition of tree rings are discussed with an example from trees in northern Eurasia. Oxygen isotope values of Larix, Picea and Pinus trees were measured over a large climatic gradient extending from Norway to Siberia. The spatial isotope variations were highly correlated to the annual mean temperature (r 2 =0.84), whereby the slope of the corresponding regression line was 0.35/°C. When considering the changes in 18O/16O during the 20th century, not only the temperature, but also changes in the precipitation patterns have to be considered, in particular the observed increase in the amount of winter precipitation.  相似文献   

15.
Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.  相似文献   

16.
Abstract

We determined vertical oxygen isotope gradients of leaf organic matter for a grassland in Switzerland and a mountain beech forest (Fagus sylvatica) in Northern Italy. A distinctly positive 18O/16O gradient with height above ground was found for the grassland (7.9‰m?1, p < 0.001), whereas the gradient was negative for the forest (–0.077‰m?1, p < 0.001). The results are consistent with microclimatic measurements, although large isotope variations between the species have to be taken into account for the grassland. A conceptual scheme is shown which relates the isotope enrichment to the canopy density, considering the effects of transpiration and canopy structure. We conclude that the analysis of the within canopy variation in δ18O of organic matter can be used to provide long-term estimates of leaf water isotope composition, thus improving existing isotope methods to determine the gas-exchange between vegetation and atmosphere.  相似文献   

17.
Groundwaters in the area of a mixed landfill (domestic waste above uranium mill tailings) in Dresden (Saxony, Germany) were investigated for their isotope signatures to distinguish between different groundwater types. To determine between the two contamination sources (waste and uranium mill tailings) a multi parameter interpretation was done using both, the main hydrochemical parameters the radionuclides 234U, 238U, 226Ra and 222Rn as well as the environmental isotopes of the elements hydrogen, oxygen, sulphur and carbon. The seepage water from the landfill shows higher delta34S, delta18O and tritium values as the inflow. The tritium values give an idea about water movement in the dump and mean residence time of the groundwater. The water in the dump shows varying delta13C values which indicate different processes occurring in the dump.  相似文献   

18.
Models that explain the oxygen isotope enrichment in leaf water (and biomass) treat the relationship between the kinetic fractionation that occurs during evapotranspiration and the stomatal conductance in an empirical way. Consequently, the isotopic enrichment is always predicted to decrease with increasing stomatal conductance, regardless of the experimental evidence to the contrary. We explain why and suggest an alternative method to reconcile theory and experiment. We support this with our experimental data on rice and groundnut plants.  相似文献   

19.
We examined a floodplain area in the middle section of the river Elbe Valley with regard to hydrogeological and hydrological processes using isotopic methods. Over two years, river water and groundwater have been analysed for temporal and spatial chemical and isotopic (delta2H and delta18O) changes. By these methods we assessed the flow dynamics of the river-groundwater infiltration system. At low and mean river stages there is a general hydraulic gradient from the higher areas at the margin of the valley towards the floodplain. During floods river water infiltrates into the adjacent aquifer not primarily through the river banks but first through surface water inflow from north to south, via depressions and gullies from the back of the floodplain. The early stage of river water infiltration is characterized by a sharp decrease in conductivity and in concentrations of SO4(2-) and Cl- in the hydraulically connected shallow aquifer. delta2H and delta18O values show a similar tendency. We observed a significant minimum in stable isotope ratios during the flood in March 1999. Using a simple mixing equation it was calculated that the groundwater in the upper, shallow aquifer consists of around 70% river water in the transition zone (well 13) during flooding.  相似文献   

20.
18O/16O isotope effects were observed at the cathode of a polymer electrolyte membrane fuel cell at 25 and 35°C. Results of experiments in which the 18O/16O isotope ratios of the oxygen gases supplied to and exhausted from the cell were measured revealed that the lighter isotope 16O reacted more preferentially to form water molecules at the cathode than the heavier one, 18O. The value of the oxygen isotope separation factor, S1, defined as the ratio of the 18O/16O isotope ratios of the oxygen gases supplied to and exhausted from the cell, ranged from 1.0030 to 1.0139, and tended to decrease with decreasing rate of oxygen utilisation (θ) and with increasing flow rate of the feed oxygen gas (DF). The value of another separation factor, S2, defined as the ratio of the 18O/16O isotope ratios of the exhausted oxygen gas and oxygen having reacted to form water molecules at the cathode, ranged from 1.0049 to 1.0304. The S2 value was much less affected by the change in θ and DF than the S1 value with the majority of the S2 value being in the range of 1.0240–1.0304.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号