首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In previous work about axisymmetric adhesive contact on power-law graded elastic materials, the contact interface was often assumed to be frictionless, which is, however, not always the case in practical applications. In order to elucidate the effect of friction and the coupling between normal and tangential deformations, in the present paper, the problem of a rigid punch with a parabolic shape in non-slipping adhesive contact with a power-law graded half-space is studied analytically via singular integral equation method. A series of closed-form analytical solutions, which include the frictionless and homogeneous solutions as special cases, are obtained. Our results show that, compared with the frictionless case, the interfacial friction tends to reduce the contact area and the indentation depth during adhesion. The magnitude of the coupling effect depends on both the Poisson ratio and the gradient exponent of the half-space. This effect vanishes for homogeneous incompressible as well as for linearly graded materials but becomes significant for auxetic materials with negative Poisson’s ratio. Furthermore, influence of mode mixity on the adhesive behavior of power-law graded materials, which was seldom touched in literature, is discussed in details.  相似文献   

3.
In this paper, adhesive contact of a rigid cylinder on an elastic power-law graded half-space is studied analytically with the theory of weakly singular integral equation and orthogonal polynomial method. Emphasis is placed on the coupling effect between tangential and normal directions which was often neglected in previous works. Our analysis shows that the coupling effect tends to reduce the contact area in the compressive regime. The effect of bending moment on the adhesion behavior is also examined. Like a pull-off force, there also exists a critical bending moment at which the cylinder can be bended apart from the substrate. However, unlike pull-off force, the critical bending moment is insensitive to the gradient exponent of the graded material.  相似文献   

4.
This paper investigates the two-dimensional frictionless contact problem of a functionally graded magneto-electro-elastic materials (FGMEEMs) layered half-plane under a rigid flat or a cylindrical punch. It is assumed that the punch is a perfect electro-magnetic conductor with a constant electric potential and a constant magnetic potential. The magneto-electro-elastic (MEE) properties of the FGMEEM layer vary exponentially along the thickness direction. Using the Fourier transform technique, the contact problem can be reduced to Cauchy singular integral equations, which are then solved numerically to determine the normal contact stress, electric displacement and magnetic induction on the contact surface. Numerical results show that the gradient index, punch geometry and magneto-electro-mechanical loads have a significant effect on the contact behavior of FGMEEMs.  相似文献   

5.
The conductive heat transfer between two elastic bodies in the static contact can cause the system to be unstable due to the interaction between the thermoelastic distortion and pressure-dependent thermal contact resistance. This paper investigates the thermoelastic contact instability of a functionally graded material (FGM) layer and a homogeneous half-plane using the perturbation method. The FGM layer and half-plane are exposed to a uniform heat flux and are pressed together by a uniform pressure. The material properties of the FGM layer vary exponentially along the thickness direction. The characteristic equation governing the thermoelastic stability behavior is obtained to determine the stability boundary. The effects of the gradient index, layer thickness and material combination on the critical heat flux are discussed in detail through a parametric study. Results indicate that the thermoelastic stability behavior can be modified by adjusting the gradient index of the FGM layer.  相似文献   

6.
The main interest of this study is a new method to solve the axisymmetric frictionless contact problem of functionally graded materials (FGMs). Based on the fact that an arbitrary curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into a series of sub-layers with shear modulus varying linearly in each sub-layer and continuous at the sub-interfaces. With this model, the axisymmetric frictionless contact problem of a functionally graded coated half-space is investigated. By using the transfer matrix method and Hankel integral transform technique, the problem is reduced to a Cauchy singular integral equation. The contact pressure, contact region and indentation are calculated for various indenters by solving the equations numerically. An erratum to this article can be found at  相似文献   

7.
8.
A generalized JKR model is established for non-slipping adhesive contact between two dissimilar elastic spheres subjected to a pair of pulling forces and a mismatch strain. We discuss the full elastic solution to the problem as well as the so-called non-oscillatory solution in which tension and shear tractions along the contact interface is decoupled from each other. The model indicates that the mismatch strain has significant effect on the contact area and the pull-off process. Under a finite pulling force, a pair of adhering spheres is predicted to break apart spontaneously at a critical mismatch strain. This study suggests an adhesion mediated deformation sensing mechanism by which cells and molecules can detect mechanical signals in the environment via adhesive interactions.  相似文献   

9.
In this article, we study the axisymmetric tor-sional contact problem of a half-space coated with func-tionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thick-ness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral trans-form technique and reduce the problem to a singular integral equation, and then numerically determine the unknown con-tact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.  相似文献   

10.
At small length scales, the adhesion and surface effect are of great significance, both of which play important roles in the contact between two elastic solids. In this study, the classical Johnson–Kendall–Roberts (JKR) adhesive contact theory is generalized to the nanoscale at which the surface effect is considered. The influence of the surface stress on the JKR adhesive contact is investigated by employing the non-classical Boussinesq fundamental solutions. It is found that, compared with the classical theory, the pull-off force increases while the critical contact radius decreases as a result of the surface effect. Numerical results show that a relative error of 10% can be introduced in the pull-off force when the indenter radius is less than 20 nm. A detailed theoretical analysis of this interesting phenomenon is presented based on dimensional analysis, and two scaling laws for the adhesive contact at the nanoscale are constructed. These two new scaling laws reveal that the pull-off force is relevant to the elastic properties of the bulk materials, which is different from the classical adhesive contact theory. The present work is promising for the engineering applications in micro-electro-mechanical systems (MEMS) and nano-intelligent devices.  相似文献   

11.
An exact solution to the problem of indentation with friction of a rigid cylinder into an elastic half-space is presented. The corresponding boundary-value problem is formulated in planar bipolar coordinates, and reduced to a singular integral equation with respect to the unknown normal stress in the slip zones. An exact analytical solution of this equation is constructed using the Wiener-Hopf technique, which allowed for a detailed analysis of the contact stresses, strain, displacement, and relative slip zone sizes. Also, a simple analytical solution is furnished in the limiting case of full stick between the cylinder and half-space.  相似文献   

12.
Motivated by experimental observations that cell-cell and cell-matrix adhesion often involves formation of discrete patches of dense molecular bonds, we consider the plane strain problem of two elastic half-spaces, each covered with a layer of lipid membrane, joined together by mobile molecular bonds that diffuse along the interface under the combined action of a thin layer of glycocalyx repellers and an externally applied tensile stress. We show that, for a range of bond density values with or without the applied stress, the state of a uniform distribution of bonds is intrinsically unstable with respect to perturbations in bond density distribution. This instability is found to be primarily driven by elastic deformation energies in the bulk and the membrane. The change in free energy associated with a cosine perturbation in bond density distribution indicates that there exists a critical wavelength beyond which the perturbation becomes unstable and a fastest growing wavelength that tends to dominate as the instability grows. These length scales have typical values in the order of a micrometer, in agreement with the general characteristic size of bond clusters observed in cell adhesion.  相似文献   

13.
The problem of thermoelastic contact mechanics for the coating/substrate system with functionally graded properties is investigated, where the rigid flat punch is assumed to slide over the surface of the coating involving frictional heat generation. With the coefficient of friction being constant, the inertia effects are neglected and the solution is obtained within the framework of steady-state plane thermoelasticity. The graded material exists as a nonhomogeneous interlayer between dissimilar, homogeneous phases of the coating/substrate system or as a nonhomogeneous coating deposited on the substrate. The material nonhomogeneity is represented by spatially varying thermoelastic moduli expressed in terms of exponential functions. The Fourier integral transform method is employed and the formulation of the current thermoelastic contact problem is reduced to a Cauchy-type singular integral equation of the second kind for the unknown contact pressure. Numerical results include the distributions of the contact pressure and the in-plane component of the surface stress under the prescribed thermoelastic environment for various combinations of geometric, loading, and material parameters of the coated medium. Moreover, in order to quantify and characterize the singular behavior of contact pressure distributions at the edges of the flat punch, the stress intensity factors are defined and evaluated in terms of the solution to the governing integral equation.  相似文献   

14.
The paper deals with the estimation of the pressure distribution, the shape of contact and the friction force at the interface of a flat soft elastic solid moving on a rigid half-space with a slightly wavy surface. In this case an unsymmetrical contact is considered and justified with the adhesion hysteresis. For soft solids as rubber and polymers the friction originates mainly from two different contributions: the internal friction due to the viscoelastic properties of the bulk and the adhesive processes at the interface of the two solids. In the paper the authors focus on the latter contribution to friction. It is known, indeed, that for soft solids, as rubber, the adhesion hysteresis is, at least qualitatively, related to friction: the larger the adhesion hysteresis the larger the friction. Several mechanisms may govern the adhesion hysteresis, such as the interdigitation process between the polymer chains, the local small-scale viscoelasticity or the local elastic instabilities. In the paper the authors propose a model to link, from the continuum mechanics point of view, the friction to the adhesion hysteresis. A simple one-length scale roughness model is considered having a sinusoidal profile. For partial contact conditions the detached zone is taken to be a mode I propagating crack. Due to the adhesion hysteresis, the crack is affected by two different values of the strain energy release rate at the advancing and receding edges respectively. As a result, an unsymmetrical contact and a friction force arise. Additionally, the stability of the equilibrium configurations is discussed and the adherence force for jumping out of contact and the critical load for snapping into full contact are estimated.  相似文献   

15.
We derive solutions of the Kirchhoff equations for a knot tied on an infinitely long elastic rod subjected to combined tension and twist, and held at both endpoints at infinity. We consider the case of simple (trefoil) and double (cinquefoil) knots; other knot topologies can be investigated similarly. The rod model is based on Hookean elasticity but is geometrically nonlinear. The problem is formulated as a nonlinear self-contact problem with unknown contact regions. It is solved by means of matched asymptotic expansions in the limit of a loose knot. We obtain a family of equilibrium solutions depending on a single loading parameter (proportional to applied twisting moment divided by square root of pulling force), which are asymptotically valid in the limit of a loose knot, ε→0. Without any a priori assumption, we derive the topology of the contact set, which consists of an interval of contact flanked by two isolated points of contacts. We study the influence of the applied twist on the equilibrium.  相似文献   

16.
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications.  相似文献   

17.
The mechanics of detachment between a wavy elastic half space and a rigid solid is considered. Solutions for the axisymmetric problem of a rigid sphere and the plane strain problem of a rigid cylinder detaching from a wavy surface are developed. The interacting solids are taken to be in complete contact over a finite area initially. It is shown that the surface waviness makes the detachment process unstable, with the interface separating in alternating stable and unstable segments. Each unstable segment dissipates mechanical energy, leading to an increase in the total work of separation compared to that of a flat surface. Further, waviness causes the maximum separation force or the pull-off force to increase during detachment, resulting in an apparent toughening of the interface. This mechanism provides an alternative explanation to the experimental observations in the literature that roughness can sometimes lead to increase in pull-off force. It also illustrates the role of roughness in the attachment capability of several insect feet possessing soft pads. The basic solution presented here can be used to analyze the detachment of surfaces with multiple scale roughness as well. The solution also suggests strategies to improve reversible adhesion of a soft material by designing optimal surface topographies.  相似文献   

18.
This paper proposes a semi-analytical model for the two-dimensional contact problem involving a multi-layered elastic solid loaded normally and tangentially by a rigid punch. The solid is comprised of a homogeneous coating and substrate joined together by a graded elastic transition layer whose material properties exhibit an exponential dependence on the vertical coordinate. By applying the Fourier transform to the governing boundary value problem, we formulate analytic expressions for the stresses and displacements induced by the application of line forces acting both normally and tangentially at the origin. The superposition principle is then used to generalise these expressions to the case of distributed normal and tangential tractions acting on the solid surface. A pair of coupled integral equations are further derived for the parabolic stamp problem which are easily solved using collocation methods.  相似文献   

19.
This paper is concerned with the axisymmetric elastostatic problem related to the rotation of a rigid punch which is bonded to the surface of a nonhomogeneous half-space. The half-space is composed of an isotropic homogeneous coating in the form of layer, which is attached to the functionally graded half-space. The shear modulus of the FGM is assumed to vary in the direction of axis Oz normal to the boundary as μ1(z) = μ0(1 + αz)β, where μ0, α, β are positive constants. The punch undergoes rotation due to the action of the internal loads. By using Hankel's integral transforms, the mixed boundary value problem is reduced to dual integral equations, and next, to a Fredholm's integral equation of the second kind, which is solved numerically for the case of β = 2. The final results show the effect of non-homogeneity on the shear stresses and an unknown moment of punch rotation.  相似文献   

20.
Axisymmetric contact at finite Coulomb friction and arbitrary profiles is examined analytically and numerically for dissimilar linear elastic solids. Invariance and generality are aimed at and an incremental procedure is developed resulting in a reduced benchmark problem corresponding to a rigid flat indentation of an elastic half-space. The reduced problem, being independent of loading and contact region, was solved by a finite element method based on a stationary contact contour and characterized by high accuracy. Subsequently, a tailored cumulative superposition procedure was developed to resolve the original problem to determine global and local field values. Save for the influence of the coefficients of friction and contraction ratio, it is shown that at partial slip the evolving relative stick-slip contour is independent of any convex and smooth contact profile at monotonic loading. For flat and conical profiles with rounded edges and apices, results are illustrated for relations between force, depth and contact contours together with surface stress distributions. The solution for dissimilar solids in a full space is transformed to a half-space problem and solved for a combination of material parameters in order to first determine interface traction distributions. Subsequently, full field values for the two solids were computed individually. In order to predict initiation of fracture and plastic flow, results are reported for the location and magnitude of maximum tensile stress and effective stress, respectively, for a range of geometrical and material parameters. In two illustrations, predicted results are compared with experimental findings related to initiation of brittle fracture and load-depth relations at nanoindentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号