首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用种子乳液聚合法在Fe3O4纳米粒子表面聚合包覆N-异丙基丙烯酰胺(NIPAM)与α-甲基丙烯酸(MAA)的共聚物,制备了磁性热敏聚合物微球Fe3O4/P(NIPAM-co-MAA).利用广角X射线衍射仪(WAXD)、透射电子显微镜(TEM)、zeta粒度仪(DLS)、热重分析(TGA)、振动样品磁力计(VSM)及比表面积测试仪(BET)等对微球的结构与形貌进行了表征,通过紫外-可见光分光光度法(UV-Vis)研究了微球对水溶性模型药物罗丹明B(RhB)的负载和磁感应控制释放行为.结果表明,微球粒径为80~200 nm,比表面积约为30.04m2/g,平均孔径约为24.50 nm;微球中聚合物含量约为73 wt%,磁粒子含量约为20 wt%,饱和磁感应强度为16.49 emu/g,其体积相转变温度(VPTT)约为37.5℃.RhB在微球中的装载量可以达到16.38 mg/g;在外加交变磁场作用下,RhB在模拟肠液和胃液中的磁感应释放量分别达到10.47和13.02 mg/g.  相似文献   

2.
考察了表面活性剂存在条件下利用脲醛树脂杂化沉淀制备氧化硅微球的反应过程. 不同表面活性剂条件下所得的氧化硅微球产物各不相同. 焙烧后P123 (PEO20-PPO70-PEO20)条件的杂化微球分解成壳状氧化硅碎片, CTAB(十六烷基三甲基溴化铵)条件的氧化硅严重变形, 体积收缩到前体粒子的九分之一, 而SDBS(十二烷基苯磺酸钠)条件的产物球形貌良好的保留了下来. BET分析揭示P123和CTAB条件下的氧化硅比表面分别增加了20%和13%, 而SDBS(十二烷基苯磺酸钠)条件的产物在表面积不变的条件下孔体积和孔径减少了一半. 定量分析证明SDBS条件下氧化硅纳米粒子的杂化受到了明显抑制, 而正硅酸乙酯浸渍方式的补硅量接近一倍, 这种优化的几何结构保证了氧化硅微球产物的完整性和稳定性.  相似文献   

3.
设计合成了一种光/还原双响应水凝胶微球, 该微球可在温和的刺激条件下实现三维(3D)细胞的大规模培养和无酶无损捕获. 水凝胶微球组分中包含一个双响应功能单体(M1), 其中邻硝基苄酯功能基团可在紫外光照下与氨基化合物发生光偶联作用, 从而在水凝胶微球表面实现黏附蛋白的有效固定, 并通过蛋白质-整合素相互作用介导细胞的黏附. 微球表面细胞生长增殖后, 其中的二硫键基团可被谷胱甘肽还原, 从而介导细胞无酶无损温和释放. 这种通过调节水凝胶微球表面生物活性分子的固定与释放介导细胞黏附与捕获的新方法为细胞工程提供了一种通用而有效的手段.  相似文献   

4.
以纤维素和纳米Fe3O4为原料制得磁性纤维素微球, 在纤维素微球表面选择合适的模板分子, 以甲基丙烯酸、 丙烯酰胺和N,N'-亚甲基双丙烯酰胺为功能单体, 采用水溶液聚合法制得表面分子印迹磁性纤维素微球. 采用傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)和振动样品磁强计(VSM)等表征了分子印迹聚合物微球的结构. 以罗丹明B(RhB)为模板分子, 通过吸附动力学与吸附热力学实验研究了表面分子印迹磁性纤维素微球对RhB的吸附性能, 结果表明, 制备的表面分子印迹磁性纤维素微球对罗丹明B具有特异性识别作用, 饱和吸附量达到0.542 mg/mg, 吸附平衡时间为10 h左右. 表面分子印迹磁性纤维素微球大大降低了对吸附环境的依赖, 并可重复利用.  相似文献   

5.
壳聚糖修饰PLGA阳离子型纳米微球的制备与表征   总被引:7,自引:1,他引:6  
采用单乳化-溶剂(O/W)挥发技术制备表面带正电荷的壳聚糖(CHS)修饰聚乙/丙交酯(PLGA)纳米微球(PLGA/CHS), 通过正交试验优化了纳米微球的制备条件. 结果表明, 微球粒径可控制在150~200 nm内, 在pH=4时, 纳米微球表面电位最高为55 mV. 影响微球粒径的主要因素是聚合物的浓度, CHS的分子量和浓度以及介质的pH值对微球表面电位也有明显影响. 制备粒径较小而表面电位较高的PLGA/CHS纳米微球条件为: ρ(CHS)=3 mg/mL, ρ(PLGA)=10 mg/mL, Vo/Va=1/4. SEM图像显示经CHS修饰的PLGA的纳米微球形状规整, 荧光显微观察和XPS分析结果证实CHS包覆于微球表面.  相似文献   

6.
门吉英  高保娇  陈志萍  么兰 《化学学报》2012,70(21):2273-2280
以对苯乙烯磺酸钠(SSS)为功能单体, 以N,N'-亚甲基双丙烯酰胺(MBA)为交联剂, 采用铈盐-羟基氧化还原引发体系, 在交联聚乙烯醇(CPVA)微球表面实施了5-氟尿嘧啶(5-FU)分子的表面印迹, 在微球CPVA表面形成印迹聚合物(MIP)层, 即制备了5-FU分子印迹微球MIP-PSSS/CPVA. 采用红外光谱(FTIR)和扫描电子显微镜(SEM)法, 对印迹微球进行了表征. 重点考察分析了印迹微球对5-氟尿嘧啶(5-FU)的结合(载药)性能与结合机理, 考察探索了载药微球在不同pH介质中的释放行为. 实验结果表明, 基于本体系特殊的羟基-铈盐表面引发体系, 可有效地实现5-FU分子的表面印迹, 在微球CPVA表面形成分布有大量5-FU分子印迹空穴的聚合物层. 在酸性介质中, 受强静电相互作用的驱动, 印迹微球MIP-PSSS/CPVA对5-FU分子表现出很强的结合能力, 结合容量达110 mg/g, 可实现有效载药. 载药微球的释药行为既具有强烈的pH依赖性, 又具有时滞性: 在模拟胃液中(pH=1), 基本不释药; 在模拟小肠液中(pH=6.8), 释药量很小; 在模拟结肠液中(pH=7.4), 则发生突释, 表现出高效的结肠定位释放行为.  相似文献   

7.
殷雪旸  顾恺  邵正中 《化学学报》2023,81(2):116-123
蛋白质纳米颗粒具有良好的生物相容性和生物降解性,易于进行额外的表面修饰,用作药物输送系统提高了生物利用度,减少了药物分子的毒副作用.本工作在利用苯硼酸基团与再生桑蚕丝蛋白(RSF)上相关侧基之间具有路易斯酸-碱配对反应的基础上,通过3-丙烯酰胺苯硼酸(APBA)在RSF水溶液中原位聚合,使RSF分子链重排形成微球并在表面负载抗炎中药,制备了载药丝蛋白/聚苯硼酸纳米微球.此尺寸分布均匀的微球直径约为550~600nm,表面光滑且在水中的分散性能良好;对乔松素、杜鹃素和地奥司明三种药物的负载率分别为7.8%,11.9%和13.4%,包封率分别为75.0%,89.1%和93.7%.载药微球控制释放约7d,且缓释行为具有pH响应性.丝蛋白/聚苯硼酸纳米微球与主体药物协同作用提高了自由基清除速度和清除效率,优于直接给药组.与此同时,将RSF改换为牛血清白蛋白或明胶蛋白,采用此方法也能制成尺寸分别为260和100nm的白蛋白/聚苯硼酸微球或明胶蛋白/聚苯硼酸微球.由此,三种不同尺寸、电性和药物释放速率的蛋白质/聚苯硼酸纳米微球有望适应多种静脉注射和皮下或腹腔注射药物传输的需求.  相似文献   

8.
首先设计合成出新颖反应性SiO2模板剂(即表面含苄基氯化学官能团的SiO2纳米球), 然后利用1,4-对二氯苄(DCX)作为自交联功能单体, 成功地发展了一种“反应性模板剂诱导原位超交联法”制备层次孔聚合物(HPP)及其层次孔碳材料(HPC)的新思路: 一方面, DCX作为有机单体分子, 可与SiO2纳米球表面的苄基氯化学官能团原位反应形成共价键, 极大地增强了聚合物前驱体和模板剂的相互作用力, 有利于模板剂的高度单分散和表面均匀包覆共价有机聚合物; 另一方面, DCX分子可以发生自交联反应, 免去交联剂的额外添加, 简化了制备流程. 利用该法所得HPP具有独特的微孔-中孔-大孔呈层次化分布的孔结构特征: 微孔壳-大孔腔空心纳米球之间相互交联堆叠形成丰富的中孔和大孔, 各层次纳米孔道紧密相连. 进一步地, HPP的共价有机骨架具有超交联化学结构, 可确保这类层次孔纳米结构在高温碳化过程中的稳定继承, 由此制得HPC, 其BET比表面积为756 m2·g-1.  相似文献   

9.
以聚苯乙烯微球为模板, 经过原位还原和种子生长过程在聚苯乙烯微球表面包覆银(Ag)纳米粒子; 以正硅酸乙酯为硅源, 在十六烷基三甲基溴化铵的导向下实现介孔二氧化硅(mSiO2)可控包覆, 去除模板得到Ag/mSiO2空心微球. 透射电子显微镜(TEM)和氮气吸附-脱附分析结果表明, SiO2壳层厚度约为20 nm, 介孔孔径为2.1 nm, 孔道分布均匀. 进一步利用虹吸作用使对巯基苯胺(4-ATP)分子进入微球内与Ag粒子结合, 构建表面增强拉曼散射(SERS)标记材料. SERS测试结果表明, 该标记材料检测限达到10-7 mol/L, SERS增强因子达到3.7×105.  相似文献   

10.
利用多巴胺仿生聚合方法制备了具有良好生物相容性的聚多巴胺纳米微球,并在其表面原位合成银纳米颗粒.复合物微球具有良好的催化还原H2O2的性能以及良好的结合生物分子的能力.将制备的复合物微球作为标记物,将氨基化石墨烯作为基底材料,构建了检测人免疫球蛋白(Ig G)的夹心型电化学免疫传感器.运用循环伏安法和计时电流法对构建的电化学免疫传感器进行了性能分析,并对实验条件进行了考察优化.在最佳的实验条件下,免疫传感器的线性范围是0.1 pg/m L~15 ng/m L,检出限为0.025 pg/m L.  相似文献   

11.
建立了一种基于金纳米粒子与巯基相互作用的在磁性高分子复合微球表面高效组装功能分子的新方法.首先制备了粒径均一的介孔磁性纳米粒子簇(MSP),利用蒸馏沉淀技术在MSP上包覆一层―S―S―键交联的聚甲基丙烯酸壳层(P(MAA-Cy)),并将直径10~30 nm的金纳米粒子沉积在MSP@P(MAACy)复合微球表面,从而获得MSP@P(MAA-Cy)-Au NP复合微球.调控HAu Cl4的投料量可以控制金纳米粒子沉积数量和尺寸.利用金粒子和巯基之间的强相互作用,将巯基修饰的荧光分子快速可控组装在MSP@P(MAA-Cy)-Au NP微球上.作为模型示范,实现了一次在MSP@P(MAA-Cy)-Au NP微球上快速固定单种或多种功能分子,为即时、高效、定量在功能微球(靶向药物载体等)上修饰功能分子提供了一种可选择的解决方案.  相似文献   

12.
首先采用一次乳化法制备出PLGA[聚(乳酸-羟基乙酸)]纳米微球,并通过静电吸附将阳离子聚合物壳聚糖修饰到PLGA微球表面,然后以香草醛为交联剂对壳聚糖进行化学交联,得到一种壳交联的p H响应型纳米微球(PCV),微球粒径为(277.60±38.01)nm,表面电位为(21.60±4.51)m V.微球稳定性评价结果显示微球在24 h内粒径变化较小;流式细胞仪检测显示细胞对PCV微球的摄取量比未经修饰的PLGA微球的摄取量高;空白微球细胞毒性实验表明在空白微球浓度小于80μg/m L时细胞的存活率达93.24%.以多西他赛(DTX)为模型药物进行包载,该纳米微球DTX的载药率为7.48%,包封率为34.98%;体外药物释放实验显示,该微球在p H=5.0环境下孵育90 h的药物积累释放率达58.66%,而在p H=7.4的环境下的药物积累释放率为50.63%;此外,载DTX微球毒性试验结果表明该载药微球对A549肺癌细胞有较强的杀伤作用,其IC50值可达0.0009μg/m L.  相似文献   

13.
将一种含具有聚集诱导发光性能(AIE)的四苯乙烯的2-脲基-4[1H]-嘧啶酮衍生物(TPE-bis UPy)在氯仿中通过四重氢键作用组装形成的超分子聚合物,再以十六烷基三甲基溴化铵(CTAB)为表面活性剂利用微乳法制备了基于超分子聚合物的纳米球.这种纳米球的形貌通过SEM进行了表征,具有规整的形貌与尺寸.相比在溶液里,该超分子聚合物纳米球的荧光显著增强.通过改变单体的浓度得到了3种不同粒径的超分子聚合物纳米球,DLS表征其粒径分别为46、66和91 nm.将这3种不同粒径的TPE-bis UPy超分子聚合物纳米小球与带负电的曙红(EY)进行组装,由于静电相互作用曙红吸附在纳米球表面,拉近了TPE-bis UPy和曙红之间的距离,使得在组装体内TPE-bis UPy可以有效地将激发能传递给曙红分子,该体系的发光颜色从蓝色荧光变为黄绿色荧光,其能量传递效率分别为62%、55%和39%,洗去表面活性剂CTAB后静电作用减弱,能量传递效率显著降低,分别为46%、36%和33%.研究表明,TPE-bis UPy超分子聚合物纳米小球与曙红的组装体系内,静电作用越强能量传递效率越高;超分子聚合物纳米球粒径越小,能量传递效率越高;并且通过这种组装可以调控体系的发光颜色,能量传递也可以通过体系的发光颜色变化观察到.  相似文献   

14.
特殊形态聚合物微球原位负载Ag纳米粒子   总被引:1,自引:1,他引:0  
以苯乙烯单封端的聚N-异丙基丙烯酰胺(St-PNIPAAm)大分子单体为反应性分散稳定剂,使之与丙烯腈(AN)和少量苯乙烯(St)在醇/水混合介质中进行三元分散共聚反应,制得了以聚苯乙烯(PS)为核,表面接枝PNIPAAm的聚合物微球(PNIPAAm-g-PAN/PS).利用扫描电子显微镜(SEM)观察证实:所得聚合物微球的粒径和表面凸起均一,形态结构规整,其粒径和形态可通过改变聚合反应条件加以控制.以典型配方的聚合物微球为媒介,AgNO3为金属源,乙醇为还原剂,在90 ℃下使Ag纳米粒子原位负载在PNIPAAm-g-PAN/PS聚合物微球表面.利用透射电子显微镜(TEM),紫外光谱(UV)及傅立叶红外光谱(FT-IR)对表面负载Ag纳米粒子的聚合物微球样品进行了表征,结果表明:Ag纳米粒子在特殊形态聚合物微球表面负载均匀,通过改变银离子的用量可将Ag纳米粒子的大小控制在3~32 nm范围内,最小平均粒径约为6 nm.  相似文献   

15.
《高分子学报》2017,(2):315-320
以棉织物为基材,利用γ-射线辐射引发甲基丙烯酸十二烷基酯(LMA)接枝聚合,使聚苯乙烯(PS)纳米微球通过接枝链以共价键固定到棉织物上,从而在棉织物表面构筑低表面能的纳米尺度粗糙结构,获得低滚动角的动态超疏水棉织物.傅里叶变换红外光谱(FTIR)分析证明通过辐射接枝,在棉织物上存在PLMA接枝链和PS纳米微球.扫描电子显微镜(SEM)表征证明了PS纳米微球的固定使得棉织物表面呈现纳米尺度的粗糙结构.接触角测试结果证明所获棉织物具有超疏水性能,且相对于仅接枝LMA的改性棉织物,PS纳米微球的固定可以显著降低水滴的滚动角,实现动态超疏水的效果.通过抗弯刚度的测量表征了改性前后棉织物的柔软度,结果表明辐射接枝方法对棉织物的柔软度改变不大,不影响穿着性能.  相似文献   

16.
采用巯基丙基三甲氧基硅烷(MPS)一步水解法制备了表面带有巯基(-SH)的纳米SiO2微球(nSiO2-SH), 探讨了水/醇体积比、 反应温度、 MPS初始浓度及反应时间对nSiO2-SH微球形貌的影响, 并分析了反应机理. 制备的nSiO2-SH微球进一步与还原型谷胱甘肽(GSH)中的-SH反应生成双硫键(-S-S-), 在微球表面键合上GSH分子, 得到了生物功能化的纳米nSiO2-GSH微球. 通过扫描电子显微(SEM)、 透射电子显微镜(TEM)、 傅里叶变换红外光谱(FTIR)和热重分析仪(TG)对样品的表面形貌、 尺寸和组成等进行了表征. 利用十二烷基磺酸钠-聚丙烯酰胺凝胶电泳法(SDS-PAGE)检测样品对谷胱甘肽S-转移酶(GST)的分离效果, 结果表明, nSiO2-GSH微球能从混合蛋白中特异性吸附GST, 达到了分离GST的目的.  相似文献   

17.
由分子侧链上修饰近红外荧光分子的聚赖氨酸及表面聚丙烯酸修饰的磁共振显影磁性纳米颗粒为组装单元,采用自组装法构筑了在近红外、磁共振双重显影中均具有蛋白酶响应性的纳米尺度自组装微球.微球形成的组装驱动力为聚赖氨酸侧链氨基与磁性纳米颗粒表面羧基在水相中的静电相互作用,两类组装前驱体在静电力作用下组装为纳米尺度团聚体,再通过戊二醛对氨基的适度交联来构筑胰蛋白酶响应的双显影复合微球.该复合微球处于自组装聚集状态时,微球内近红外荧光分子间的距离减小从而发生荧光共振能量转移,导致荧光分子的自淬灭;而在胰蛋白酶活化后的解组装状态,微球内聚赖氨酸重复单元间的酰胺键被胰蛋白酶切断,荧光分子间距扩大,共振能量转移现象消失,从而导致复合微球在胰蛋白酶存在下释放荧光,荧光释放强度/淬灭强度的比值最高可达18.此外,自组装微球的磁共振显影同样具有胰蛋白酶敏感性,这与组装—解组装过程导致微球内磁性纳米颗粒的局部浓度及聚集状态发生变化有关.细胞和动物实验研究表明,复合微球呈现低细胞毒性,并可特异性地对胰蛋白酶阳性的细胞和组织进行近红外/磁共振双显影,在胰蛋白酶的生物影像学检测中具有潜在的应用前景.  相似文献   

18.
以正硅酸乙酯(TEOS)为硅源,制备介孔二氧化硅纳米微球(MSNs),利用原子转移自由基聚合(ATRP)技术在MSNs表面接枝聚甲基丙烯酸二甲胺乙酯(PDMAEMA)作为缓释开关,成为智能纳米容器(PDMAEMA-MSNs),装载防腐蚀剂-苯并三唑(BTA)验证其双重刺激响应性释放性能。采用透射电子显微镜(TEM)、热重分析(TGA) 、X-射线光电子能谱(XPS)以及傅里叶红外光谱(FT-IR)分析手段表征了MSNs的结构、形貌及表面功能化过程,并使用荧光光谱仪实时监测BTA在不同PH、温度下的释放过程。实验结果表明,智能纳米容器掺杂于SiOx/ZrOy中实现了BTA的双重响应性释放,形成Cu-BTA复合膜,起到铜金属防腐蚀的作用。  相似文献   

19.
玉米醇溶蛋白/壳聚糖复合纳米微球的制备及性能研究   总被引:1,自引:0,他引:1  
以生物相容性的玉米醇溶蛋白(Zein)和壳聚糖(Chitosan)为原料,利用溶剂-非溶剂相分离法成功制备了玉米醇溶蛋白/壳聚糖复合纳米微球(NSZ/CS),运用FT-IR、SEM和TEM等对复合纳米微球进行了表征。采用罗丹明B(RB)为模型药物分子,研究了复合纳米微球的药物释放性能。与玉米醇溶蛋白纳米微球(NSZ)相比,复合纳米微球NSZ/CS对RB和Dox·HCl的包封率显著上升,分别可达83.5%和75.3%。NSZ/CS对RB的累积释放量也大幅度提高。在模拟人工胃液和人工肠液中,NSZ/CS对RB释放36 h后,累积释放量分别为85.2%和95.4%。进一步将NSZ/CS用于负载抗癌药物盐酸阿霉素(Dox·HCl),发现Dox@NSZ/CS在p H=7.4的磷酸缓冲液(PBS)中的累积释放量达91.0%。复合纳米微球NSZ/CS有望作为水溶性药物载体应用于生物医药领域。  相似文献   

20.
选择带负电荷且溶解度和分子结构对pH值非常敏感的聚丙烯酸作为封堵分子, 采用静电吸附的修饰方法, 制备了pH响应的MCM-41型介孔二氧化硅纳米颗粒. 利用高倍透射电子显微镜(TEM)、 X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)及比表面积分析等手段表征了介孔二氧化硅纳米颗粒的物理化学性质. 以联钌吡啶染料分子作为模式客体分子, 研究了pH调控下的模式客体分子在介孔二氧化硅纳米颗粒中的包裹及释放行为. 结果表明, 该介孔二氧化硅纳米颗粒对pH具有很好的响应性; 在近中性条件下, 带正电的二氧化硅纳米颗粒通过静电吸附作用吸附带负电的聚丙烯酸, 导致介孔封堵, 使包载的染料分子几乎无释放; 客体分子的释放率随着pH值的降低而升高, 当pH≤5时, 染料分子显著释放, pH=1时客体分子的释放率高达98%, 可以实现对包载客体分子的控制释放. 该pH响应的介孔二氧化硅纳米颗粒载体具有制备简便、 价格低廉和包载量大等优点, 有望应用于药物的控制释放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号