首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.  相似文献   

2.
3.
Yue-Liang Wu 《中国物理C(英文版)》2017,41(10):103106-103106
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P~(1,5) as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.  相似文献   

4.
One may ask whether the relations between energy and frequency and between momentum and wave vector, introduced for matter waves by de Broglie, are rigorously valid in the presence of gravity. In this paper, we show this to be true for Dirac equations in a background of gravitational and electromagnetic fields. We first transform any Dirac equation into an equivalent canonical form, sometimes used in particular cases to solve Dirac equations in a curved space-time. This canonical form is needed to apply Whitham’s Lagrangian method. The latter method, unlike the Wentzel–Kramers–Brillouin method, places no restriction on the magnitude of Planck’s constant to obtain wave packets and furthermore preserves the symmetries of the Dirac Lagrangian. We show by using canonical Dirac fields in a curved space-time that the probability current has a Gordon decomposition into a convection current and a spin current and that the spin current vanishes in the Whitham approximation, which explains the negligible effect of spin on wave packet solutions, independent of the size of Planck’s constant. We further discuss the classical-quantum correspondence in a curved space-time based on both Lagrangian and Hamiltonian formulations of the Whitham equations. We show that the generalized de Broglie relations in a curved space-time are a direct consequence of Whitham’s Lagrangian method and not just a physical hypothesis as introduced by Einstein and de Broglie and by many quantum mechanics textbooks.  相似文献   

5.
We solve the Dirac equation for Mie-type potential including a Coulomb-like tensor potential under spin and pseudospin symmetry limits with arbitrary spin–orbit coupling quantum number κ. The Nikiforov–Uvarov method is used to obtain analytical solutions of the Dirac equation. Since it is only the wave functions which are obtained in a closed exact form; as for the eigenvalues, only the eigenvalue equations have been given and they have been solved numerically. It is also shown that the degeneracy between spin doublets and pseudospin doublets is removed by tensor interaction.  相似文献   

6.
We investigate the exact solution of the Dirac equation for the Mie-type potentials under the conditions of pseudospin and spin symmetry limits. The bound state energy equations and the corresponding two-component spinor wave functions of the Dirac particles for the Mie-type potentials with pseudospin and spin symmetry are obtained. We use the asymptotic iteration method in the calculations. Closed forms of the energy eigenvalues are obtained for any spin-orbit coupling term κ. We also investigate the energy eigenvalues of the Dirac particles for the well-known Kratzer-Fues and modified Kratzer potentials which are Mie-type potentials.  相似文献   

7.
It is proved that nondissociating P-invariant relativistic wave equations (RWE) for particles with maximal spin so whose matrices satisfy the commutative relations of Dirac matrix algebra contain all values of the spin from 0 (1/2) to so. Corollaries of the theorem are examined for certain of the existing approaches to the construction of a theory of RWE.  相似文献   

8.
The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus(and minus) the vector potential.We also include pseudo-scalar potentials in the interaction.The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis,which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric.This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction.We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.  相似文献   

9.
A sequence of Foldy-Wouthuysen transformations applied to the Dirac equation coupled to a background gravitational field is used to obtain evolution equations for the mean position, mean momentum, and mean spin operators. These equations are compared with the analogous Papapetrou equations for a classical gravitationally coupled pole-dipole particle.  相似文献   

10.
The CPT symmetry is made local for the Dirac field and an analogous local symmetry is proposed for curved spacetime. A nontrivial, infinitesimal variation of the Dirac action is thus induced. It is shown that the metric spin connection of general relativity cannot accommodate this symmetry. A new gauge field is therefore introduced, which turns out to be a real pseudovector field, and its equations of motion are derived.  相似文献   

11.
In this paper, conductance of spin and electron in graphene-based ferromagnet—superconductor (FS) and parallel and antiparallel ferromagnet–superconductor–ferromagnet (FSF) junctions are studied. Using the Dirac–Bogoliubov–de Gennes equations, Andreev and normal reflections are obtained and then using these coefficients, conductance of spin and electrons are calculated at the FS interface(s) analytically. As a result, both the energy dependence of spin and charge differential conductances are investigated and a comparison between electron and spin transport is done in this paper. Effect of exchange energy of ferromagnet h on conductances is studied too.  相似文献   

12.
Resita Arum Sari  A Suparmi  C Cari 《中国物理 B》2016,25(1):10301-010301
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation,then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.  相似文献   

13.
There exist classical systems whose canonical quantization yields relativistic wave equations. As a constructive proof, the classical mechanics of a translating-rotating five-frame is considered. Its quantization yields the Dirac, Weyl, Klein-Gordon, Maxwell-Proca, and higher spin equations, together with a rotational mass spectrum for the states predicted.  相似文献   

14.
The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin–orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.  相似文献   

15.
Approximate analytical solutions of the Dirac equation are obtained for the Yukawa potential plus a tensor interaction with any κ-value for the cases having the Dirac equation pseudospin and spin symmetry. The potential describing tensor interaction has a Yukawa-like form. Closed forms of the energy eigenvalue equations and the spinor wave functions are computed by using the Nikiforov–Uvarov method. It is observed that the energy eigenvalue equations are consistent with the ones obtained before. Our numerical results are also listed to see the effect of the tensor interaction on the bound states.  相似文献   

16.
Generators of the group invariance of polarization origin U(2s + 1) are constructed for relativistic wave equations (RWE), where s is the particle spin. Particular cases of the vector (mass) and Dirac fields are examined.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 74–77 November, 1982.  相似文献   

17.
In thispaper three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary spin, parity, and charge parity are derived. For the special case of spinless states bound by interactions with a Coulomb-type potential the properties of the ground-state solutions of the three equations are investigated both analytically and numerically. The coupling-constant spectrum turns out to depend strongly on the spinor structure of the fermion interaction. If the latter is chosen such that the nonrelativistic limits of the equations coincide, an analogous spectrum is found for the instantaneous Bethe-Salpeter and the quasi-potential equations, whereas the two-particle Dirac equation yields qualitatively different results.  相似文献   

18.
Using the Nikiforov-Uvarov (NU) method, pseudospin and spin symmetric solutions of the Dirac equation for the scalar and vector Hulthén potentials with the Yukawa-type tensor potential are obtained for an arbitrary spin-orbit coupling quantum number κ. We deduce the energy eigenvalue equations and corresponding upper- and lower-spinor wave functions in both the pseudospin and spin symmetry cases. Numerical results of the energy eigenvalue equations and the upper- and lower-spinor wave functions are presented to show the effects of the external potential and particle mass parameters as well as pseudospin and spin symmetric constants on the bound-state energies and wave functions in the absence and presence of the tensor interaction.  相似文献   

19.
Following suggestions of Schönberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C4, a Jordan-Wigner algebra G4, and Wigner transformations. To do this we solve the problem of the conditions under which elements in C4 generate minimal ideals, and extend this to G4. This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations.  相似文献   

20.
An elementary particle is described as a spherically symmetric solution of the Klein-Gordon equation and the Einstein equations of general relativity. It is found that it has a mass of the order of the Planck mass. If one assumes that the motion of its center of mass is determined by the Dirac equations, then it has a spin of 1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号