共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
结合传统有界波模拟器和辐射波模拟器的特点,采用新型双锥-线栅型平板天线结构,设计了一台水平极化有界波电磁脉冲模拟器。通过电磁仿真和实验测试,对模拟器的辐射特性和场均匀性进行了研究。仿真结果和实测结果基本一致。结果表明,模拟器能产生包含地面反射的水平极化电磁脉冲环境,波形满足上升沿(2.5±0.5) ns、半高宽(23±5) ns的高空电磁脉冲标准要求。模拟器使用灵活机动,能在不小于5 m×3 m×2 m工作空间内产生峰值场强不小于50 kV/m的6 dB均匀场,也能在降低测试场强时提供更大的工作空间。 相似文献
4.
研究了有界波电磁脉冲模拟器下短线缆效应的理论建模和实验方法。基于传输线模型计算了线缆在有界波电磁脉冲模拟器辐照下的电流响应。建立了有界波电磁脉冲模拟试验环境,其前沿时间小于5 ns,脉冲半高宽约200 ns。开展了短线缆的效应实验验证研究,短线缆负载端响应电流的测量和计算结果吻合得很好,表明应用改型有界波电磁脉冲模拟器开展短线缆效应实验在理论和实验上都是可行的。这种线缆实验方法具有效应实验空间电磁场分布规范均匀、参数指标可控、监测技术成熟等优点。 相似文献
5.
分析比较了阻抗匹配和失配情况下传输线充电的原理和波过程。分析结果表明:失配情况下的最大优点是能够实现脉冲功率增益。应用阻抗为27 W、长度为540 mm传输线为充电传输线和长度分别为30,45,60 mm、阻抗均为5 W传输线为被充电传输线进行了对比试验。实验结果表明:在距离辐射天线6 m处,输出辐射场强随低阻抗传输线长度增加而略有增加,最大辐射场强为49 kV/m,考虑气体开关的实际能量损耗,这与理论分析的充电电压和功率增益关系相吻合;长度为45 mm的5 W被充电传输线的输出脉冲前沿约210 ps,幅度约为150 kV。 相似文献
6.
分析比较了阻抗匹配和失配情况下传输线充电的原理和波过程。分析结果表明:失配情况下的最大优点是能够实现脉冲功率增益。应用阻抗为27 W、长度为540 mm传输线为充电传输线和长度分别为30,45,60 mm、阻抗均为5 W传输线为被充电传输线进行了对比试验。实验结果表明:在距离辐射天线6 m处,输出辐射场强随低阻抗传输线长度增加而略有增加,最大辐射场强为49 kV/m,考虑气体开关的实际能量损耗,这与理论分析的充电电压和功率增益关系相吻合;长度为45 mm的5 W被充电传输线的输出脉冲前沿约210 ps,幅度约为150 kV。 相似文献
7.
8.
9.
设计、建造了一台不对称结构、分布式负载有界波电磁脉冲(EMP)模拟器(MDES-60)。模拟器平行极板间区域长5 m,宽2 m,高1 m。测试结果显示模拟器工作空间电场幅值分布均匀、波形后沿基本无反射。表明通过缩小前过渡段的锥角、加宽下极板调整特性阻抗及采用分布式负载等措施取得了很好效果。配套不同的脉冲源,该模拟器可模拟IEC61000-2-9、Bell实验室、1976年出版物等多种脉宽标准的EMP波形,场强幅度范围15~60 kV/m,可用于短线缆响应实验或小型电子设备的考核效应实验。 相似文献
10.
将基于MPI平台的并行时域有限差分(FDTD)方法与基于完全磁导体(PMC)镜像法相结合,并结合CST模拟软件,模拟给出分布式负载垂直极化有界波电磁脉冲(EMP)的外泄场(包括侧泄场和后泄场)的分布规律。模拟结果与实验结果符合得很好。研究表明:在高度方向上,地面附近的外泄场峰值最大,但远离模拟器时,在1.5 m高的高度范围内,外泄场的峰值差别不大;不管采用何种双指数脉冲源,距离模拟器边缘位置比较近的测点在传输线段的侧泄场的幅值大于分布式负载段侧泄场的幅值,且两者都大于分布式负载末端的后泄场幅值,但随着测点与模拟器边缘的垂直距离的增加,分布式负载段的后泄场可能会比侧泄场大;对于电压峰值相同的双指数激励源而言,所含的高频分量越多,在一定范围内,从其分布式负载末端外泄的后泄场更大;模拟器下方大地的电导率增加,模拟器的外泄场增加。
相似文献11.
将基于MPI平台的并行时域有限差分(FDTD)方法与基于完全磁导体(PMC)镜像法相结合,并结合CST模拟软件,模拟给出分布式负载垂直极化有界波电磁脉冲(EMP)的外泄场(包括侧泄场和后泄场)的分布规律。模拟结果与实验结果符合得很好。研究表明:在高度方向上,地面附近的外泄场峰值最大,但远离模拟器时,在1.5 m高的高度范围内,外泄场的峰值差别不大;不管采用何种双指数脉冲源,距离模拟器边缘位置比较近的测点在传输线段的侧泄场的幅值大于分布式负载段侧泄场的幅值,且两者都大于分布式负载末端的后泄场幅值,但随着测点与模拟器边缘的垂直距离的增加,分布式负载段的后泄场可能会比侧泄场大;对于电压峰值相同的双指数激励源而言,所含的高频分量越多,在一定范围内,从其分布式负载末端外泄的后泄场更大;模拟器下方大地的电导率增加,模拟器的外泄场增加。 相似文献
12.
采用将大地设置为均匀有耗介质,并用单轴完全匹配层(UPML)吸收边界截断的方式,对离散电阻加载的地面上方大型水平极化电磁脉冲(EMP)有界波模拟器的时域辐射场进行并行时域有限差分模拟.给出大地电导率和相对介电常数及模拟器圆锥的锥半径不同时模拟器辐射场的时域波形,分析三者对辐射场的影响,并给出模拟器内有10 m长的效应物时耦合场的时域波形.并行模拟时,计算网格总数达18亿.研究表明:大地相对介电常数和电导率越大,近地面测点接收到的地面反射作用越大;测点场的峰值受锥半径的影响最大,且随着锥半径的增大,同一水平面内的场也越不均匀;对地面上方1 m处的几个测点,其脉冲峰值及半高宽受地面反射及地面损耗的影响较大,而地面上方5 m处的几个测点则受地面影响较小;当效应物开孔位置位于模拟器场泄露一侧时耦合进入圆筒内的电磁波能量较多. 相似文献
13.
测量了9.5 m高的水平极化有界波电磁脉冲模拟器的内部场,并根据实验测量结果分析了该模拟器内场分布特性,包括一定区域内场均匀性的定量分析及模拟器内部有效测试空间的确定方法,进而对最低位置为距离地面2 m的有效测试空间进行了预估。实验结果表明:位于该模拟器双锥中心正下方且距离该中心5.5~7.5 m的测点场的峰值基本按照测点与双锥中心间距的倒数衰减,且随着测点与双锥中心间距的增大,因锥与极板不连续结构导致的波形变化在时间轴上滞后,而因地面影响导致的波形变化在时间轴上提前;在距离地面比较高的水平面上,两极板之间场的外泄方向场的衰减比双锥中轴线方向场的衰减更慢;该模拟器内部距离地面2 m的水平面上12 m×12 m的区域内所取测点的归一化场平均峰值约为0.678,归一化场平均峰值的标准偏差约为0.068 9,场的均匀性约为2.039 dB。 相似文献
14.
将并行时域有限差分方法用于分布式负载平行板有界波电磁脉冲模拟器模拟,并给出模拟器的尺寸参数对工作空间半高处几个测试点场的影响。研究结果表明:与源在x轴向距离上越靠近的点,其电场的上升沿越小;模拟器传输线最大宽度和最大高度之比为2,且下金属板宽度与传输线最大宽度相同时,测试点场的上升沿较小,半高宽较大;随着传输线在x方向投影长度的增加,与源位置x轴向等距离的测试点场的峰值增大,场的上升沿减小,但减小的量趋于平缓。且同轴线馈电时得到的各测试点场脉冲的上升沿要比直接加平面电场源的方式更大一点,半高宽则要小一点,但两者波形相似。 相似文献
15.
将并行时域有限差分方法用于分布式负载平行板有界波电磁脉冲模拟器模拟,并给出模拟器的尺寸参数对工作空间半高处几个测试点场的影响。研究结果表明:与源在x轴向距离上越靠近的点,其电场的上升沿越小;模拟器传输线最大宽度和最大高度之比为2,且下金属板宽度与传输线最大宽度相同时,测试点场的上升沿较小,半高宽较大;随着传输线在x方向投影长度的增加,与源位置x轴向等距离的测试点场的峰值增大,场的上升沿减小,但减小的量趋于平缓。且同轴线馈电时得到的各测试点场脉冲的上升沿要比直接加平面电场源的方式更大一点,半高宽则要小一点,但两者波形相似。 相似文献
16.
为快速估算出垂直极化平行板有界波电磁脉冲(EMP)模拟器的时域近场,将散射传递函数法应用于该类型模拟器近场的时域计算中,即对于给定的脉冲源,先寻找有效频谱范围能覆盖该源的高斯脉冲源,并应用时域有限差分(FDTD)方法计算该高斯脉冲源激励时模拟器中测试点场的时域响应,再利用傅里叶变换、系统的传递函数及傅里叶逆变换计算得到给定脉冲源激励时各测试点场的瞬态响应。所得计算结果与直接使用给定脉冲源激励时FDTD方法的计算结果符合较好。所述方法可用于同一模拟器在不同脉冲源激励时辐射近场的快速估算,能大大减少FDTD模拟计算的次数,尤其对于中大型模拟器能有效减少计算时间和内存。 相似文献
17.
采用基于矩量法电磁仿真软件FEKO,对快沿电磁脉冲模拟器内部电场进行数值计算。分析仿真结果,得出了模拟器内部垂直极化电场的分布规律。仿真结果表明:从不同高度中心到边缘的场强变化趋势来看,最接近上传输线的位置为振荡,接近上下传输线的位置是先增大后减小,其余区域为单调减小;模拟器内部垂直极化场的±10%均匀场区域为模拟器传输线空间处于高度的20%~85%,宽度的80%(自中心算起)区域,接近下传输线位置的高度的20%以下,宽度的30%以内(自中心算起)。 相似文献
18.
19.