首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Symmetric hierarchical hollow PbS structures consisting of nanowalls were successfully fabricated by a facile solvothermal process in ethylenediamine at 120 degrees C for 12 h, employing lead acetate trihydrate and dithizone as precursors; the thickness of the nanowalls is about 80 nm. No surfactants or other templates were used in the process. The synthesized product was characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), ultraviolet-visible spectrometer (UV-vis), near-infrared absorption spectroscopy (near-IR), and fluorescence spectrophotometer. The effect of the reaction conditions on the size and morphologies of PbS structures was investigated. The results show that the temperatures, solvent, and sulfur sources are crucial factors on the morphologies and sizes of the symmetric hierarchical hollow PbS microcrystals. A possible growth mechanism of hierarchical hollow PbS structures is presented. UV-vis absorption spectrum holds a weak peak at 253 nm; the near-infrared absorption spectrum of PbS microcrystals has the two absorption peaks centered at 9613 cm(-1) (1040 nm) and 6771 cm(-1) (1477 nm), showing a blue shift compared with the bulk PbS (approximately 3020 nm). And the fluorescence spectrum of PbS microcrystals consists of an emission peak with a maximum at 305 nm. These PbS microcrystals may have potential applications in the fundamental study of nanostructures as well as fabricating nanodevices.  相似文献   

2.
We present a surfactant-assisted solvothermal approach for the controllable synthesis of a PbS nanocrystal at low temperature (85 degrees C). Nanotubes (400 nm in length with an outer diameter of 30 nm), bundle-like long nanorods (about 5-15 mum long and an average diameter of 100 nm), nanowires (5-20 mum in length and with a diameter of 20-50 nm), short nanorods (100-300 nm in length and an axial ratio of 5-10), nanoparticles (25 nm in width with an aspect ratio of 2), and nanocubes (a short axis length of 10 nm and a long axis length of 15 nm) were successfully prepared and characterized by transmission electron microscopy, scanning electron microscopy, and powder X-ray diffraction pattern. A series of experimental results indicated that several experimental factors, such as AOT concentration, ratio of [water]/[surfactant], reaction time, and ratio of the reagents, play key roles in the final morphologies of PbS. Possible formation mechanisms of PbS nanorods and nanotubes were proposed.  相似文献   

3.
A highly regular hexapod-like structure of PbS with six symmetric arms has been synthesized by a simple and mild chemical solution route. The hexapod-like PbS structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The results show that each arm is perpendicular to the other four, and opposite to the last one. The arms are about 0.3-0.6 microm long, which have about 40-60 nm tips and 150-200 nm base. And the arm shows an icicle-like structure and some clear steps, and grows along 100 directions. The most possible growth mechanism discussed herein is based on the characterization results. The Raman spectra of the hexapod-like PbS structure were investigated. The results show that our products are sensitive to the laser and can be photodegraded easily.  相似文献   

4.
Large-scale CdS nanowires with uniform diameter and high aspect ratios were synthesized using a simple solvothermal route that employed CdCl2 and S powder as starting materials, ethylenediamine (en) as the solvent. X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) images show that the products are hexagonal structure CdS nanowires with diameter of 40 nm and length up to 10 μm. Selected area electron diffraction (SAED) and high resolution TEM (HRTEM) studies indicate the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by optical absorption spectra and photoluminescence spectra. Based on the results of contrastive experiments, it is found that the sulfur source and the solvent play significant roles in the formation of uniform nanowires. A possible formation mechanism of nanowires is discussed.  相似文献   

5.
PbS nanorods have been successfully synthesized in water-in-oil (W/O) microemulsion containing non-ionic surfactant OP, n-pentanol, cyclohexane, and aqueous solution. The effects of the molar ratio of water to surfactant (ω0), the concentration of reactants and the ageing time on the morphologies of PbS nanoparticles were investigated. The microstructures, morphologies and properties of the synthesized products were characterized by means of X-ray diffraction, transmission electron microscopy, and ultraviolet-visible (UV-VIS) absorption spectroscopy, respectively. The results showed that the synthesized rod-like products are composed of cubic phase PbS. These nanorods have an average diameter of about 100 nm, and an average length of about 500 nm. In the UV-VIS absorption spectrum, the absorption edge of PbS nanorods exhibit a blue shift compared with that of bulk PbS, indicating the quantum confinement effect of PbS nano-particles  相似文献   

6.
The gamma-irradiation technique has been extended to irradiate liquid ethylenediamine containing metal ions and sulfur powder, and a series of uniform metal sulfide particles including CdS, PbS, Cu(2)S, and Ag(2)S have been prepared at room temperature. X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible spectra have been used to characterize the products. In addition, the discussion shows that ethylenediamine and solvated electrons formed in ethylenediamine play crucial roles during the synthetic process. The stability constants of the metal chelates with ethylenediamine, the solubility product constants of the metal sulfides, and the standard electrode potentials of the metal ions also directly control the formation of metal sulfides. Copyright 2001 Academic Press.  相似文献   

7.
We have synthesized nanoparticles of hexagonal CdS in the diameter range 3-13 nm by the reaction of cadmium acetate dihydrate with thioacetamide in imidazolium [BMIM]-based ionic liquids. We have obtained three different particle sizes of CdS by changing the anion of the ionic liquid. Addition of trioctylphosphine oxide (TOPO) to the reaction mixture causes greater monodispersity as well as smaller particle size, while addition of ethylenediamine produces nanorods of 7 nm average diameter. Hexagonal ZnS and cubic PbS nanoparticles with average diameters of 3 and 10 nm, respectively, have been prepared by the reaction of the metal acetates with thioacetamide in [BMIM][BF4]. Hexagonal CdSe nanoparticles with an average diameter 12 nm were obtained by the reaction of cadmium acetate dihydrate with dimethylselenourea in [BMIM][BF4]. In this case also we observe the same effect of the addition of TOPO as in the case of CdS. Addition of ethylenediamine to the reaction mixture gives rise to nanorods. ZnSe nanowires with a cubic structures, possible diameters in the range 70-100 nm by the reaction of zinc acetate dihydrate with dimethylselenourea in [BMIM][MeSO4]. The nanostructures obtained are single crystalline in all the cases. Most of the nanostructures show characteristic UV/Vis absorption and photoluminescence emission spectra. The thermodynamically most stable structures are generally produced in the synthesis carried out in ionic liquids.  相似文献   

8.
Three-dimensional, orthogonal lead sulfide (PbS) nanowire arrays and networks have been prepared by using a simple, atmospheric pressure chemical vapor deposition (APCVD) method. These uniform nanowires (average diameter 30 nm) grow epitaxially from the surface of the initial PbS crystal seeds and form orthogonal arrays and networks in space. The growth mechanism has been explored, and the process was classified as homogeneous, epitaxial growth in the 200 directions. Furthermore, Raman spectra of PbS nanowires are reported here, and their characteristic Raman peak (190 cm(-1), no shoulder) could be used as a unique probe for the study of PbS nanomaterials.  相似文献   

9.
李宗木  徐法强 《中国化学》2005,23(3):337-340
Single-crystalline SnO2 nanowires have been successfully prepared in large scale on Au-coated silicon substrate by heating the mixture of self-made high-purity SnO2 powders and graphite powders at 900℃. Besides the line type nanowires some more features were observed. The products were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and Raman spectrum techniques. The results indicate that the tin dioxide nanowires have a rutile structure with diameters ranging from 30 to 120 nm and lengths up to several tens of micrometers. The possible mechanism of the growth and reaction for the nanowires was also discussed.  相似文献   

10.
A sol-gel template technique has been put forward to synthesize single-crystalline semiconductor oxide nanowires, such as n-type SnO2 and p-type NiO. Scanning electron microscopy and transmission electron microscopy observations show that the oxide nanowires are single-crystal with average diameters in the range of 100-300 nm and lengths of over 10 microm. Photoluminescence (PL) spectra show a PL emission peak at 401 nm for n-type semiconductor SnO2, and a PL emission at 407 nm for p-type semiconductor NiO nanowires, respectively. Correspondingly, the observed violet-light emission at room temperature is attributed to near-band-edge emission for SnO2 nanowires and the 3d(7)4s-->3d8 transition of Ni2+ for NiO nanowires.  相似文献   

11.
Sonochemical synthesis of hollow PbS nanospheres   总被引:5,自引:0,他引:5  
PbS hollow nanospheres with diameters of 80-250 nm have been synthesized by a surfactant-assisted sonochemical route. The nanostructures were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), (high-resolution) transmission electron microscopy [(HR)TEM], and scanning electron microscopy (SEM) images. Structural characterization indicates that shells of the hollow spheres are composed of PbS nanoparticles with diameters of about 12 nm. The formation of the hollow nanostructure was explained by a vesicle-template mechanism, in which sonication and surfactant play important roles. Furthermore, uniform silica layers were successfully coated onto the hollow spheres via a modified St?ber method to enhance their performance for promising applications.  相似文献   

12.
多树枝结构和立方结构PbS的水热合成及形成机理   总被引:1,自引:0,他引:1  
在无模板条件下,用Pb(NO3)2做铅源,(CH4N2S)做硫源,用水热法在160 ℃反应24 h制备了结晶度好的多树枝结构PbS。利用XRD、SEM、EDX、TEM对产物进行了表征,结果表明所得产物为面心立方多树枝状结构,单个树枝的长度为1.0~3.0 μm。此外,在碱性条件下丙三醇/水体系中制备了具有不同凹面的立方结构PbS,边长为2.0~5.0 μm。对2种不同形态PbS的影响因素进行了讨论,并提出了形成机理。同时对其荧光及紫外性质进行了研究,结果表明立方结构的PbS在309和373.5 nm处出现了2个荧光峰,在211和232 nm处出现了2个紫外吸收峰。  相似文献   

13.
谢云龙  钟国  杜高辉 《化学学报》2012,70(10):1221-1226
介绍一种利用石墨还原快速制备大量硫化锌纳米线的方法,并分别合成了超晶格型、双轴型、核/壳型的硫化锌/氧化锌异质结纳米线。所合成的硫化锌纳米线存在六方纤锌矿和立方闪锌矿两种晶型,纳米线长度达几十微米,直径在20-50 nm,直径均匀且产量很高。在具有双轴型的硫化锌/氧化锌异质结中,首次发现具有超结构特征的氧化锌。HRTEM分析表明,硫化锌/氧化锌超晶格异质结界面为ZB-ZnS(111)∥ZnO(0001),而核/壳型异质结界面为W-ZnS(0001)∥ZnO(0001),这三个晶面分别为各自晶体的极性面,即所合成的硫化锌/氧化锌异质结中极性面相互平行。对ZnS 和ZnS/ZnO 异质结的生长机制进行了探讨,并对硫化锌纳米线与硫化锌/氧化锌异质结的光学性质进行了分析。  相似文献   

14.
Novel hierarchical heterostructures formed by wrapping ZnS nanowires with highly dense SiO(2) nanowires were successfully synthesized by a vapor-liquid-solid process. The as-synthesized products were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy equipped with an energy-dispersive X-ray spectrometer. Studies indicate that a typical hierarchical ZnS/SiO(2) heterostructure consists of a single-crystalline ZnS nanowire (core) with diameter gradually decreasing from several hundred nanometers to 20 nm and adjacent amorphous SiO(2) nanowires (branches) with diameters of about 20 nm. A possible growth mechanism was also proposed for the growth of the hierarchical heterostructures.  相似文献   

15.
In-doped ZnO (IZO) nanowires have been synthesized by a thermal evaporation method. The morphology and microstructure of the IZO nanowires have been extensively investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The products in general contain several kinds of nanowires. In this work, a remarkable type of IZO zigzag nanowire with a periodical twinning structure has been investigated by transmission electron microscopy (TEM). HRTEM observation reveals that this type of IZO nanowire has an uncommonly observed zinc blend crystal structure. These nanowires, with a diameter about 100 nm, grow along the [111] direction with a well-defined twinning relationship and a well-coherent lattice across the boundary. In addition, an IZO nanodendrite structure was also observed in our work. A growth model based on the vapor-liquid-solid mechanism is proposed for interpreting the growth of zigzag nanowires in our work. Due to the heavy doping of In, the emission peak in photoluminescence spectra has red-shifted as well as broadened seriously.  相似文献   

16.
The synthesis of Mg(OH)2 one-dimensional (1D) nanostructures was systematically investigated in different solvents at various temperatures with Mg10OH18Cl2·5H2O nanowires as source materials. The results showed that the characters of the products, such as crystal size, shape, and structure, were strongly influenced by the solvent and temperature during the solvothermal process. 1D nanotubes of Mg(OH)2, with 80-300 nm outer diameter, 30-80 nm wall thickness, and several tens of micrometers in length were obtained by choosing bidentate ligand solvents such as ethylenediamine and 1,6-diaminohexane as the reaction solvent. But when using monodentate ligand pyridine as the reaction solvent, the obtained samples showed nanorods morphology. The Mg(OH)2 thus produced was analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), and selected-area electron diffraction (SAED). The possible growth mechanism of the 1D nanostructure Mg(OH)2 was discussed.  相似文献   

17.
功能化PbS量子点的水相合成及结构表征   总被引:4,自引:0,他引:4  
在水溶液中以Pb(NO3)2和Na2S为原料,巯基乙酸为稳定剂,合成了水溶性PbS量子点.用透射电子显微镜、扫描电子显微镜、粒度分析仪和红外光谱对PbS量子点进行了表征,结果表明所合成的PbS量子点的平均粒径为25 nm左右,分散性好,且巯基乙酸成功修饰于PbS纳米粒子表面,使其具有进一步与生物分子偶联的作用.  相似文献   

18.
Bicrystalline hematite nanowires   总被引:2,自引:0,他引:2  
Bicrystalline nanowires of hematite (alpha-Fe(2)O(3)) have been successfully synthesized by the oxidation of pure iron. The product was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM in combination with focal series reconstruction, energy-dispersive X-ray spectroscopy, and electron energy-loss spectroscopy. The bicrystalline nanowires have diameters of 20-80 nm and lengths up to 20 microm. All of the investigated materials are found to be alpha-Fe(2)O(3) with a rhombohedral crystal structure. Investigations indicate that most of the bicrystalline nanowires are nanotwins with ellipsoidal heads. The orientation relationship between the nanotwins can be described as (110)(M)//(110)(T), [110](M)//[0](T). An energy-filtered TEM investigation indicates that the ellipsoidal head is iron-rich. The growth mechanism of such unique nanostructures is considered to be a solid-phase growth via surface and internal diffusions of molecules from base to tip.  相似文献   

19.
α-MnO2 nanowires or nanorods have been selectively synthesized via the hydrothermal method in nitric acid condition. The α-MnO2 nanowires hold with average diameter of 50 nm and lengths ranging between 10 and 40 μm, using MnSO4·H2O as manganese source; meanwhile, α-MnO2 bifurcate nanorods with average diameter of 100 nm were obtained by adopting MnCO3 as starting material. The morphology of α-MnO2 bifurcate nanorods is the first one to be reported in this paper. X-ray powder diffraction (XRD), field scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the products. Experimental results indicate that the concentrated nitric acid plays a crucial role in the phase purity and morphologies of the products. The possible formation mechanism of α-MnO2 nanowires and nanorods has been discussed.  相似文献   

20.
化学气相沉积法合成高结晶度的三元系Cd1-xZnxS纳米线   总被引:1,自引:0,他引:1  
以硫化锌、硫化镉和活性碳粉作为反应物,利用化学气相沉积方法成功合成了单晶Cd1-xZnxS纳米线.为了解产物的结构、形貌、组分、微结构以及声子振动模式,对样品进行了扫描电镜、透射电镜、X射线衍射、能谱分析以及拉曼光谱分析.分析显示合成的纳米线为六方铅锌矿结构,生长方向沿着[210]方向,长度均为10μm,直径在80-100 nm之间,x的值约为0.2.拉曼光谱分析显示产物的拉曼峰位与纯CdS相比发生了蓝移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号