首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SBA-15 organosilicas containing amine, thiol, vinyl and phenyl pendant groups were synthesized by co-condensation of tetraethoxysilane and appropriate alkoxysilanes in the presence of Pluronic P123 surfactant. The obtained materials have usually well-developed porous structure—values of specific surface area are in the range 820–950 m2/g. Sizes of the ordered mesopores are in the range 7.5–9.1 nm while the interconnecting pores are 2.3–3.1 nm in size. It was establish that size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with tetraethoxysilane. Several instrumental techniques such as infrared spectroscopy, X-ray diffraction, nitrogen sorption measurements, elemental analysis, transmission electron microscopy. FT-IR photoacoustic spectroscopy (FT-IR/PAS) was used to determine chemical composition of the final materials and to monitor the efficiency of the template removal.  相似文献   

2.
A comparative study was carried out on the matrix polymerization of divinylbenzene, acrylonitrile, and methyl methacrylate in SBA-15 silica mesoporous molecular sieves. The occupancy of the matrix mesopores by the starting monomer, the medium, the polymerization temperature and time as well as the means of removing the exotemplate were all found to affect the spatial organization and porous structure of the polymer materials. Surplus occupancy of the mesopores by the monomer (1–1.5), polymerization in vacuum, and an alkaline method for matrix removal were found to be optimal. IR spectroscopy was used to find the conversion of the starting polymer by following the relative change in intensity of the vinyl group bands. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 6, pp. 371–375, November–December, 2008.  相似文献   

3.
Poly(ethylene oxide)-poly(methyl acrylate) diblock copolymers with narrow molecular weight distributions were synthesized using atom transfer radical polymerization. The copolymers were used as micellar templates for the synthesis of mesoporous silicas. The products were characterized using small-angle X-ray scattering, transmission electron microscopy (TEM) and nitrogen adsorption. The obtained silicas exhibited two-dimensional hexagonal structures of cylindrical mesopores, and thus can be classified as SBA-15 silicas. In some cases, the size of ordered domains was very small. The (100) interplanar spacings were 13–17 nm, depending on the size of the diblock copolymer used and on the synthesis conditions. Nitrogen adsorption showed that the silicas exhibited specific surface areas of 350–800 m2 g−1, pore volumes ∼1 cm3 g−1, and narrow pore size distributions. The BJH (nominal) pore diameters were up to ∼20 nm, but actual diameters of cylindrical pores are expected to be somewhat smaller. In many cases, the mesopores exhibited constrictions.  相似文献   

4.
Micro–mesoporous materials combining the structural and sorption characteristics of a mesoporous molecular sieve (MMS) and zeolite BEA were obtained by the “dry gel conversion” method – partial zeolitization of silica MMS SBA-15 in the presence of tetraethylammonium hydroxide. The volume of the mesopores reaches 0.65 cm3/g, while that of the micropores is in the region of 0.1 cm3/g. The acidity of the obtained zeolitized materials differs from that of BEA; the total concentration of medium-strength acid centers (maximum thermal desorption of ammonia at ~315 °C) amounts to 0.15 mmol/g.  相似文献   

5.
《Comptes Rendus Chimie》2014,17(7-8):717-724
SBA-15-based solids combining semiconductive oxides (Sn and In) and noble metal (Pt) were prepared by an incipient wet impregnation method in order to obtain materials for gas sensing. The materials were characterized by XRD, BET adsorption, SEM, and TEM. The BET analysis allowed obtaining details about the specific surface areas, pore size, and modifications due to the indium and/or tin oxides followed by the Pt deposition. XRD data revealed that In2O3 did not enter the mesopores of SBA-15, preventing also the entrance of the Pt nanoparticles in the mesopores. On the other hand, SnO2 nanoparticles further doped with Pt could enter the mesoporous network, affording a SBA-15 material loaded with SnO2 and very small Pt nanoparticles with high dispersion. Tablets obtained by pressing the modified SBA-15 were tested as sensitive materials for propene and hydrogen detection.  相似文献   

6.
The surface of SBA-15 ordered mesoporous silica was functionalized with sulphonic and amine functional groups to determine the effect of changes in surface acidity on cephalexin adsorption and subsequent release. Cephalexin (CPX), which belongs to the group of cephalosporins or β-lactam antibiotics, was impregnated on functionalized SBA-15. The functionalized silica materials were characterized by SEM, TGA, FTIR and N2 adsorption, and an in vitro drug delivery test was performed. SEM micrographs showed the packed cylinders correspond to SBA 15 materials. Likewise, N2 adsorption–desorption isotherms demonstrated that the SBA-15 structure was obtained when IV-type isotherms were displayed. The inalterable stabilization of the drug was confirmed by FTIR spectroscopy. For all the samples studied, the delivery profiles exhibit two steps. A fast initial stage was obtained over the first 5 h, followed by a slower one. Regarding this second stage, the time needed to attain a plateau was undoubtedly altered by the surface functionalization.  相似文献   

7.
To remove bilirubin from human plasma, amine/methyl bifunctionalized SBA-15 materials were directly synthesized from the co-condensation of 3-aminopropylmethyldiethoxysilane and tetraethoxysilane with an amphiphilic block copolymer P123 as template. XRD, N(2) sorption analysis, FTIR and (29)Si MAS NMR were used to identify their well-ordered mesostructure and the grafting of amine and methyl groups on the surface of as-synthesized materials. Both SEM and TEM indicated that the bifunctionalized SBA-15 possessed platelet morphology. This might be attributed to the charge repulsion brought by protonated amine groups and the diminution of hydroxyl groups on the end of silicate-micelles, which passivated the end-to-end anchoring of silicate-micelles along the longitudinal axis. Such a material was investigated as the adsorbent for selective bilirubin removal from human plasma, which showed a high bilirubin clearance of 51.4% within 1.5 h with a little amount of albumin adsorption. The results of hemolysis assay suggested that the bifunctionalized SBA-15 caused serious hemolysis of red blood cells. However, in practical application, plasma separation technique could avoid direct contact between the adsorbent and red blood cells. The further hemeolysis assay proved that the plasma after contacting with the bifunctionalized SBA-15 could not lead to the hemolysis of red blood cells. Thus, the bifunctionalized SBA-15 is expected to be a potential candidate as a clinical hemoperfusion material.  相似文献   

8.
New mesoporous materials were produced incorporating, at the beginning of the SBA-15 sol–gel synthesis, three different metalloporphyrins: m-5,10,15,20-TPP-Ni2+, Etio-III-Ni2+, Etio-III-VO2+. These materials have the well-known hexagonal structure characteristic of SBA-15 with some differences: the presence of the porphyrins modifies the micelles generated during the sol–gel process changing the textural properties of the SBA-15-Porphyrins. Even when the hexagonal structure was preserved, the order in the crystalline structure was maintained only for short distances producing pores of different sizes and wider pore size distributions. UV–Vis results showed that the porphyrins are strongly adsorbed on SBA-15 through the interaction of their π electrons with the superficial hydroxyl groups of the support. This was confirmed by thermogravimetric results that show a high degree of incorporation of the porphyrins on the SBA-15 and a high thermal stability.  相似文献   

9.
Bridged polysilsesquioxane xerogels containing amine (–NH2; –NH(CH2)2NH2; —NH) and thiol (–SH) groups were synthesized by hydrolytic polycondensation of 1,2-bis(triethoxysilyl)ethane, 1,4-bis(triethoxysilyl)benzene and appropriate trifunctionalized silanes in the presence of a fluoride-ion catalyst in an ethanol solution. 29Si CP/MAS NMR give indication of the molecular framework of these materials formed by structural T1, T2 and T3 units. 3-aminopropyl or 3-mercaptopropyl groups accessible to proton or metal ions are fixed to the xerogel surface by the siloxane bonds. IR and 13C CP/MAS NMR data clearly show that 3-aminopropyl groups form hydrogen bonds. The same data testify that all xerogels contain non-condensed silanol groups and some fraction of non-hydrolyzed ethoxygroups. Functionalized polysilsesquioxane xerogels obtained by means of organic spacers have a porous structure (500–1000 m2/g) and a high content of functional groups (1.0–2.7 mmol/g). AFM data indicate that xerogels are formed by aggregating primary particles—the size of such aggregates is in the range 30–65 nm. It was established that the main factors influencing the structure and adsorption properties considered hybrid materials are: the nature and geometrical size of the functional groups, spacer flexibility and, in some cases, the ratio of the reacting alkoxysilanes and the ageing time of the gel.  相似文献   

10.
The capture of carbon dioxide was carried out using MCM-41 and SBA-15 as adsorbents. These mesoporous materials were synthesized by the hydrothermal method, and subsequently functionalized with the di-iso-propylamine (DIPA). Then, they were characterized by XRD, BET, and TG/DTG. The X-ray diffraction patterns of the synthesized samples showed the characteristic peaks of MCM-41 and SBA-15, indicating that the structures of these materials were obtained. The functionalized samples presented a decrease of the intensities of these peaks, suggesting a decreasing in the structural organization of the material; however, the mesoporous structure was preserved. For the adsorption capacity measurements, the materials were previously saturated with carbon dioxide at 75 °C, and then desorbed in a thermobalance in the temperature range of 25–900 °C, under helium atmosphere. Desorption tests showed that the functionalized MCM-41 presented a weight loss of 7.5 wt%, against 5.9 wt% for SBA-15. The obtained values indicate that these nanostructured materials can be used as adsorbent for carbon dioxide capture.  相似文献   

11.
Direct hydrothermal method is employed for incorporating iron into the pore structure of SBA-15. The resultant materials were analyzed by X-ray diffraction (XRD) patterns, N2 sorption isotherm and X-ray photoelectron spectroscopy (XPS). The characterizations of XRD patterns and XPS revealed that iron nanoparticles were present as highly dispersed nanoclusters in the well-ordered mesoporous channels of SBA-15. The characterizations of t-plot reveal only microporous channels of SBA-15 are confirmed to be filled with iron nanoparticles, leaving the mesopores unaffected. The supported material still maintained its ordered mesoporous structure similar to SBA-15 and possessed high surface area, large pore volume and uniform pore size.  相似文献   

12.
Ordered mesoporous aluminosilicate Al-SBA-15 materials with cage-like macropores have been synthesized by using micrometer-sized aluminum balls as an Al source, tetraethyl orthosilicate (TEOS) as a silica source, and triblock copolymer Pluronic P123 as a template. The resulting materials were fully characterized by XRD, N2 adsorption, SEM, TEM, ICP-AES, and 27Al MAS-NMR. The products (Al-SBA-15) have ordered two-dimensional (2-D) hexagonal mesostructures (space group p6mm). The calcined Al-SBA-15 materials exhibit disordered macropores with diameters of about 70–80 nm and ordered mesopores with a diameter of ∼5 nm, a BET surface area of about 500 m2/g, Si/Al ratio of 40–80, and a ratio of tetrahedral Al to octahedral Al sites of about 2:1. This combination of properties gives these materials potential applications in areas such as adsorption, catalysis and separation. Supported by the National Natural Science Foundation of China (Grant Nos. 20890123 & 20721063), Shanghai Science & Technology Committee (08DZ2270500), and Shanghai Leading Academic Discipline Project (No.B108)  相似文献   

13.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6, 同时通过改变水热温度制备了不同孔径大小的SBA-15, 并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段, 对其介孔结构进行了表征. 以正丁醛为探针分子, 考察了其对有机醛的吸附, 并与Y-沸石的吸附性能做了对比. 结果表明, 材料的介孔比表面积与其对正丁醛的吸附量成正比, 吸附等温线符合Langmuir 模型, 属于单层吸附, 具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1). 最后将SBA-15添加到卷烟滤嘴中, 实验结果表明, SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

14.
Channel-like and cage-like mesoporous silicas, SBA-15 (P6mm symmetry group) and SBA-16 (Im3m symmetry group), were modified by introducing single ureidopropyl surface groups, mixed ureidopropyl and mercaptopropyl surface groups, and single bis(propyl)disulfide bridging groups. These hexagonal and cubic organosilicas were prepared under acidic conditions via co-condensation of tetraethyl orthosilicate (TEOS) and proper organosilanes using poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) amphiphilic block copolymer templates, P123 (EO20PO70EO20) and F127 (EO106PO70EO106). The modified SBA-15 and SBA-16 materials were synthesized by varying the molar ratio of organosilane to TEOS in the initial synthesis gel. The removal of polymeric templates, P123 and F127, was performed with ethanol/hydrochloric acid solution. In the case of SBA-15 the P123 template was fully extracted, whereas this extraction process was less efficient for the removal of F127 template from the SBA-16-type organosilicas; in the latter case a small residue of F127 was retained. The adsorption and structural properties of the resulting materials were studied by nitrogen adsorption-desorption isotherms at −196C (surface area, pore size distribution, pore volumes), powder X-Ray diffraction, CHNS elemental analysis and high-resolution thermogravimetry. The structural ordering, the BET specific surface area, pore volume and pore size decreased for both channel-like and cage-like mesoporous organosilicas with increasing concentration of incorporated organic groups.  相似文献   

15.
Mesoporous SBA-15 materials were functionalized with amine groups through postsynthesis and one-pot synthesis, and the resulting functionalized materials were investigated as matrixes for controlled drug delivery. The materials were characterized by FTIR, N(2) adsorption/desorption analysis, zeta potential measurement, XRD, XPS, and TEM. Ibuprofen (IBU) and bovine serum albumin (BSA) were selected as model drugs and loaded onto the unmodified and functionalized SBA-15. It was revealed that the adsorption capacities and release behaviors of these model drugs were highly dependent on the different surface properties of SBA-15 materials. The release rate of IBU from SBA-15 functionalized by postsynthesis is found to be effectively controlled as compared to that from pure SBA-15 and SBA-15 functionalized by one-pot synthesis due to the ionic interaction between carboxyl groups in IBU and amine groups on the surface of SBA-15. However, SBA-15 functionalized by one-pot synthesis is found to be more favorable for the adsorption and release of BSA due to the balance of electrostatic interaction and hydrophilic interaction between BSA and the functionalized SBA-15 matrix.  相似文献   

16.

Abstract  

Organo-modified mesoporous silica SBA-15 has been studied for sorption of carbon dioxide (CO2). The SBA-15 sample was functionalized with a branched chain polymer, polyethylenimine (PEI), of different molecular weights (1,300 and 2,000 g mol−1). Surface modification was carried out by impregnation of silica by PEI or by grafting with (3-chloropropyl)triethoxysilane, followed by substitution of chlorine atoms by PEI ligands. The prepared modified mesoporous materials were characterized by nitrogen adsorption/desorption at 77 K, high-resolution transmission electron microscopy, small-angle X-ray scattering, and thermal methods. Sorption of CO2 was studied by gravimetric method at 303 K. The total amount of sorbed CO2 varied between 0.19–0.67 mmol/g for respective samples. Regeneration of the materials after adsorption was achieved by thermal treatment at 343 K.  相似文献   

17.
Nanoporous silica SBA-15 was prepared to evaluate its application as an oral drug delivery system. A series of surface-functionalized nanopore materials as efficient clarithromycin delivery carriers was investigated. An efficient pH-responsive carrier system was constructed by hydrogen bond interaction between carboxyl and hydroxyl groups in the clarithromycin and the amine group in modified SBA-15. HPLC analyses of clarithromycin were run on a C18 column using a mobile phase comprised of potassium dihydrogen phosphate, acetonitrile and methanol (30:40:30, v/v/v). Active molecules such as clarithromycin could be stored and released from the pore voids of SBA-15 by changing the pH. The amount of clarithromycin stored in the pores of nanoporous silica based on TREN [tris(2-aminoethyl) amine]-modified SBA-15 rods was up to 46 ± 4.8 wt% at pH 8. In addition, when the pH was below 4, clarithromycin was steadily released from the pores of SBA-15 (up to 97 wt% in simulated gastric medium).  相似文献   

18.
Mesoporous titania nanoparticles (denoted as MTN) with high surface area (e.g., 252 m2 g−1) were prepared using tetrapropyl orthotitanate (TPOT) as a titania precursor and 10–20 nm or 20–30 nm silica colloids as templates. Co-assembly of TPOT and silica colloids in an aerosol-assisted process and immediate calcination at 450 °C resulted in anatase/silica composite nanoparticles. Subsequent removal of the silica colloids from the composite by NaOH solution created mesopores in the TiO2 nanoparticles with pore size corresponding to that of silica colloids. Effects of silica colloids’ contents on MTN porosity and crystallites’ growth at a higher calcination temperature (e.g., 1000 °C) were investigated. Silica colloids suppressed the growth of TiO2 crystallites during calcination at a higher calcination temperature and controllable contents of the silica colloids in precursor solution resulted in various atomic ratios of anatase to rutile in the calcinated materials. The mesostructure and crystalline structure of these titania materials were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), differential thermal analysis (DTA)-thermo-gravimetric analysis (TGA), and N2 sorption.  相似文献   

19.
Manganese–vanadium oxide had been synthesized by a novel simple precipitation technique. Scanning electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller, thermogravimetric analysis/differential scanning calorimetry, and X-ray photoelectron spectroscopy were used to characterize Mn–V binary oxide and δ-MnO2. Electrochemical capacitive behavior of the synthesized Mn–V binary oxide and δ-MnO2 was investigated by cyclic voltammetry, galvanostic charge–discharge curve, and electrochemical impedance spectroscope methods. The results showed that, by introducing V into δ-MnO2, the specific surface area of the mixed oxide increased due to a formation of small grain size. The specific capacitance increased from 166 F g−1 estimated for MnO2 to 251 F g−1 for Mn–V binary oxide, and the applied potential window extended to −0.2–1.0 V (vs. saturated calomel electrode). Through analysis, it is suggested that the capacitance performance of Mn–V binary oxide materials may be improved by changing the following three factors: (1) small grain and particle size and large activity surface area, (2) appropriate amount of lattice water, and (3) chemical state on the surface of MnO2 material.  相似文献   

20.
The analysis of the porosity of materials is an important and challenging field in analytical chemistry. The gas adsorption and mercury intrusion methods are the most established techniques for quantification of specific surface areas, but unfortunately, dry materials are mandatory for their applicability. All porous materials that contain water and other solvents in their functional state must be dried before analysis. In this process, care has to be taken since the removal of solvent bears the risk of an incalculable alteration of the pore structure, especially for soft materials. In the present paper, we report on the use of small-angle X-ray scattering (SAXS) as an alternative analysis method for the investigation of the micro and mesopores within cellulose beads in their native, i.e., water-swollen state; in this context, they represent a typical soft material. We show that even gentle removal of the bound water reduces the specific surface area dramatically from 161 to 109 m2 g−1 in cellulose bead sample type MT50 and from 417 to 220 m2 g−1 in MT100. Simulation of the SAXS curves with a bimodal pore size distribution model reveals that the smallest pores with radii up to 10 nm are greatly affected by drying, whereas pores with sizes in the range of 10 to 70 nm are barely affected. The SAXS results were compared with Brunauer–Emmett–Teller results from nitrogen sorption measurements and with mercury intrusion experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号