首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用柠檬酸钠作为稳定剂,通过超声辅助水相共沉淀法合成了柠檬酸修饰的Fe_3O_4纳米粒(Fe_3O_4@CA),进一步采用真空干燥法制备了β-环糊精包覆的Fe_3O_4纳米微球(Fe_3O_4@β-CD).分别利用X射线粉末衍射仪、傅立叶变换红外光谱仪、透射电子显微镜、热重分析仪等表征手段对其进行了结构和形貌表征.同时,以多柔比星为模型药物,考察了Fe_3O_4@β-CD微球对多柔比星的体外释放行为.结果表明,Fe_3O_4@CA纳米粒子呈球形或类球形,平均流体力学直径为84nm,具有顺磁性,室温下饱和磁化强度为17.5emu·g-1,红外光谱结果表明,β-环糊精成功的包覆在Fe_3O_4@CA表面,Fe_3O_4@β-CD的平均流体力学直径为104nm,室温下饱和磁化强度为15.7emu·g-1.体外释放结果表明,Fe_3O_4@β-CD-DOX载药系统在PBS(pH=7.4)溶液中释放缓慢,12h累积释放率为45.5%.结果表明,环糊精改性的Fe_3O_4纳米微球在体外有明显的缓释效果,有望成为理想的抗肿瘤药物载体.  相似文献   

2.
首先优化共沉淀法合成Fe_2O_3内核,然后利用交互盐酸羟胺还原法在Fe_2O_3内核上覆盖Au壳,得到粒径小于30nm的Fe_2O_3@Au核壳结构纳米粒子。使用紫外-可见(UV-Vis)光谱、透射电镜(TEM)及能谱仪(EDS)等方法对Fe_2O_3@Au纳米粒子进行表征,通过MTT法分析细胞毒性。利用核磁共振成像(MRI)及电子计算机X射线断层扫描(CT)造影成像对其性能进行表征。结果表明:5次包Au获得Fe_2O_3@Au纳米粒子的Au与Fe_2O_3摩尔比是1.07∶1,平均粒径为26.22±4.14nm,UV-Vis光谱吸收峰为521nm,0.72nmol/L纳米粒子与SW620人结直肠癌细胞作用24h之后,相对细胞活率高于对照组。驰豫效率为83.75L/(mmol·s),X射线吸收系数比碘高93%,将Fe_2O_3@Au纳米粒子应用于小鼠活体成像实验,结果表明Fe_2O_3@Au对小鼠肿瘤部位的MRI和CT信号均有较好的增强效果。  相似文献   

3.
采用共沉淀法,合成了由两亲性嵌段共聚物聚(苯乙烯)-b-聚(甲基丙烯酸聚乙二醇酯)(PSt-bPMAPEG)修饰的Fe_3O_4-聚合物复合纳米粒子。以十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(AAPTS)为功能化试剂,制备了氨基功能化介孔材料Fe_3O_4/SiO_2-NH2。采用X射线衍射(XRD),傅里叶变换红外光谱(FT-IR),透射电子显微镜(TEM),N_2吸附/脱附等手段对Fe_3O_4/SiO_2-NH2进行了表征。结果表明,成功制备粒径约为50nm,孔径分别为3.3nm和42.9nm的Fe_3O_4/SiO_2介孔粒子。将磁性材料对水中酸性品红进行吸附性能研究,探讨了Fe_3O_4/SiO_2-NH2对染料酸性品红的吸附效率。结果表明:Fe_3O_4/SiO_2-NH2的用量为10mg,吸附时间为3.5min,溶液起始浓度为0.25mmol·L-1时吸附率达93.32%。  相似文献   

4.
以FeCl_3·6H_2O为原料一步合成了粒径为400 nm的Fe_3O_4磁性微粒,并用于人血清中Pb~(2+)的检测。用Zeta电位仪和单颗粒电感耦合等离子体质谱(SP-ICP-MS)对所合成的Fe_3O_4磁性微粒进行表征。通过微波消解法对血清样品进行预处理,经Fe_3O_4磁性微粒分离富集后,采用ICP-MS法检测。优化了Fe_3O_4磁性微粒分离富集Pb~(2+)的实验条件,并在pH 5.0,吸附剂用量400μL,吸附30 min的条件下,成功实现了血清中Pb~(2+)的定量检测,富集因子为10。Pb~(2+)的检出限为7 ng/L,定量下限为23.1 ng/L。  相似文献   

5.
采用溶剂热法合成磁性Fe_3O_4纳米粒子,并以此为基底设计制备了一种具有pH响应核壳结构的磁性纳米复合材料Fe_3O_4@ZIF-8@PA.该材料的比饱和磁化强度可达35.46 A·m2/g,具有良好的磁性.Fe_3O_4纳米粒子呈球型结构,分散性良好.与基底相比,复合微球的粒径尺寸明显增大,但依然符合载体材料的理想尺寸且分布均匀.此外,载体具有多孔结构,表面积较大,载药效率和载药量分别高达96.4%和144.6 mg/g.在pH为7.4和5.0的条件下对载药纳米粒子进行了药物释放研究.24 h内,粒子在2种pH下累计释放量分别为39.8%和78.6%.通过药物缓释验证了载体的pH响应性能.在实验中引入了对癌细胞具有杀伤作用的植酸,使合成的载体具有一定的抗癌作用.同时采用四甲基偶氮唑盐(MTT)法对人骨肉瘤细胞(MG-63)进行了体外分析实验,证实材料与抗癌药物阿霉素(DOX)之间存在着一定的协同抗癌效果.  相似文献   

6.
采用水热法合成Fe_3O_4@YVO_4:Eu磁性纳米荧光材料,利用透射电子显微镜(TEM)、X射线衍射仪(XRD)和荧光光谱仪(FS)对合成的材料进行微观形貌、结构和荧光光谱表征。合成的Fe_3O_4@YVO_4:Eu磁性纳米荧光材料具有核壳结构,平均粒径为40nm。随n(Fe_3O_4):n(YVO_4:Eu)的减小,发射光谱中Eu~(3+)离子的特征发射峰有所增强,材料的磁性有所减弱。结果表明,使用制备的Fe_3O_4@YVO_4:Eu磁性纳米材料显现潜指纹,具有背景干扰低、清晰度高、适用性强、环境污染小等特点,在公安技术领域应用前景广阔。  相似文献   

7.
介绍一个仪器分析综合实验——纳米Fe_2O_3和Fe_3O_4的制备及其催化高氯酸铵热分解性能的研究。采用水热法合成纳米Fe_3O_4,进而煅烧得到纳米Fe_2O_3。使用X射线粉末衍射(XRD)对制得的样品结构进行表征,通过透射电镜(TEM)可以发现其为球形颗粒,粒径在10–20 nm范围内。将制得的纳米Fe_2O_3和纳米Fe_3O_4按不同比例加入高氯酸铵(AP)中,通过对混合物进行热分析(TG-DSC),发现纳米Fe_2O_3和纳米Fe_3O_4可以明显促进AP的分解,且Fe_2O_3的催化效果优于Fe_3O_4的催化效果,并对催化机理进行了简单讨论。通过该实验,可以让学生学习水热反应的方法,掌握利用XRD、热分析等多种手段对化合物结构及性能进行表征的技能。  相似文献   

8.
采用化学共沉淀法合成硅包覆的磁性纳米粒子Fe_3O_4@SiO_2,进一步通过六亚甲基二异氰酸酯将吡哆酰肼分子(Pyh)接枝到Fe_3O_4@SiO_2表面,制得功能化的磁性纳米复合物(Fe_3O_4@SiO_2-Pyh)。通过傅里叶变换红外光谱、透射电子显微镜、X射线衍射等技术手段对其结构、形貌和磁性能进行了表征。Fe_3O_4@SiO_2-Pyh粒子具有规则的核壳结构,粒径分布在50~55 nm,壳层厚度约为15 nm。Fe_3O_4@SiO_2-Pyh结构中含有酰腙类活性基团—CO—NH—N=CH—,能与Cu~(2+)形成稳定的配合物,在此基础上采用紫外可见吸收光谱特性建立了测定Cu~(2+)的分析方法,线性范围为3.4×10~(-7)~4.5×10~(-6)mol/L,检出限为1.03×10~(-7)mol/L。此外,利用Fe_3O_4@SiO_2-Pyh良好的磁响应,通过外部磁场能够有效地除去水中过量的铜离子,在环境领域具有潜在的应用价值。  相似文献   

9.
铁酸铋的水热合成及其光催化性能   总被引:1,自引:0,他引:1  
以Fe(NO_3)_3·9H_2O和Bi(NO_3)_3·5H_2O为原料,NaOH为矿化剂,用水热法合成了柱状晶体Bi_2Fe_4O_9,其结构和催化性能经XRD,SEM和UV-Vis表征.结果表明,Bi_2Fe_4O_9截面边长约500 nm,长约2μm~3μm,分散均匀.Bi_2Fe_4O_9在可见光区域有较强吸收,对甲基橙降解效果较好.  相似文献   

10.
利用共沉淀法合成聚乙二醇修饰的磁性Fe_3O_4纳米材料,随后使用柠檬酸对其进行表面改性,采用水热法在纳米Fe_3O_4上包覆YVO_4∶Eu纳米颗粒,最终制成纳米Fe_3O_4@YVO_4∶Eu磁流体。利用XRD、TEM和FS表征纳米材料的微观形貌、结构和荧光光谱,利用痕迹检验学的分析方法对印痕的显现效果进行评价。实验结果表明,制备的Fe_3O_4@YVO_4∶Eu平均粒径为40nm,在波长为254nm的激发光下,Fe_3O_4@YVO_4∶Eu纳米材料的发射光谱中出现Eu~(3+)离子的特征发射峰。磁流体中的纳米Fe_3O_4@YVO_4∶Eu可在外加磁场下聚集,并对粘性表面上的印痕进行靶向吸附,因此,采用Fe_3O_4@YVO_4∶Eu纳米荧光磁流体大幅提升了粘性表面潜在印痕的显现效果,克服了传统方法显现清晰度不高、反差不强的缺点,清晰显现了粘性表面上的印痕,在公安技术领域具有广阔的应用前景。  相似文献   

11.
通过共沉淀法优化制备了Fe_3O_4为内核的磁性核壳式Ce掺杂ZnO催化剂(Fe_3O_4@ZnO-Ce),考察催化剂的稳定性和适用性,利用SEM、BET、ICP-AES、XRD、UV-Vis DRS、VSM、FT-IR等手段对催化剂进行表征,研究温度、pH、催化剂投加量对罗丹明B降解率的影响。结果表明,Ce掺杂ZnO包覆在Fe_3O_4表面形成球状纳米颗粒,平均粒径约100 nm,Fe_3O_4和3%Ce掺杂ZnO最佳物质的量之比为1:20,400℃煅烧2 h。日光模拟灯为光源,在pH为7、水温30℃、催化剂投加量0.2 g/100 mL、90 min罗丹明B降解率达到92%,6次循环套用降解率达到53%以上。  相似文献   

12.
合成了一种Fe_3O_4修饰的羟基化多壁碳纳米管,用于人血浆样品中士的宁和马钱子碱的萃取。采用化学共沉淀法合成了Fe_3O_4纳米粒子修饰的羟基化多壁碳纳米管作为SPE萃取剂,分别考察了萃取剂的用量,萃取体系pH,萃取时间,解吸溶剂及解吸时间,得到最优萃取条件。修饰后的碳纳米管具备良好的顺磁性,且保持了其本身的吸附性能;最优萃取条件为萃取时间30min,使用吸附剂3.38mg,pH为14,0.1mL乙腈解吸2次,每次20min。结果表明该方法合成的磁性羟基化碳纳米管能够快速、简便、环保的萃取人血浆样品中马钱子生物碱,是一种具有潜力的SPE萃取剂。  相似文献   

13.
制备羧甲基壳聚糖磁性纳米粒,并用于分离生物碱以研究其吸附分离能力。共沉淀法合成Fe_3O_4磁性纳米粒;壳聚糖先经羧甲基化,再通过碳二亚胺活化共价结合到Fe_3O_4纳米表面上。采用傅立叶变换红外光谱、透射电子显微镜和振动样品磁强计对磁性纳米材料进行结构表征,表明磁性纳米具有单一分散性,平均粒径14.4 nm。同时将制得的磁性纳米粒应用于分离生物碱,并对分离提取条件包括萃取液pH、萃取时间、洗脱液种类和浓度等进行了优化。在298~328 K间焓变化(ΔH)为-5.80 k J/mol,吸附过程自发进行,显示其具有较好的吸附分离能力。  相似文献   

14.
影响Fe3O4超微粒子性能因素的研究   总被引:10,自引:1,他引:10  
超微Fe_3O_4粒子正在广泛地应用到磁流体和催化等领域。化学共沉淀法制备Fe_3O_4是将碱液滴入一定温度的Fe~(2+)、Fe~(3+)混合液中。反应式为Fe~(2+)+2Fe~(3+)+8OH~-=Fe_3O_4+4H_2O。本文研究了Fe_3O_4超微粒子的磁性、粒度与工艺条件的关系。 1 实验 配制一定浓度的FeCl_2和FeCl_3溶液,按一定比例混合并置于三颈瓶中恒温。搅拌后,缓  相似文献   

15.
空气中低浓度甲醛的治理和消除一直备受关注.在较低的反应温度下将甲醛转化为CO_2和H_2O的催化氧化法具有能耗低、效率高和环境友好等优点,被认为是一种最具应用发展前景的甲醛消除技术.在各种催化剂体系中,一些铁基氧化物(Fe_2O_3,FFe_3O_4或ferrihydrite)负载的Pt催化剂表现出较为优异的催化性能,能够在室温下实现甲醛的完全氧化.越来越多的研究表明,载体材料的结构及形貌是影响贵金属催化剂性能的主要因素.因此,深入研究Pt物种在不同类型铁基氧化物表面的分散情况及界面间相互作用,对理解催化剂活性中心的性质,设计制备性能更加优异的负载型贵金属催化剂具有重要科学意义.本文采用共沉淀法一步合成出八面体Fe_3O_4亚微米晶负载Pt催化剂(Pt/Fe_3O_4),考察了不同热处理温度对催化剂催化甲醛氧化反应性能的影响.结果表明,在80°C下热处理的催化剂(Pt/Fe_3O_4-80)具有很高的催化活性,在室温下甲醛的转化率可接近100%.随着催化剂热处理温度的升高,催化剂活性有所降低.此外,Pt/Fe_3O_4催化剂还表现出良好的稳定性,经长时间存放或连续运行后催化剂的活性基本保持不变.此外,在一定湿度范围内(RH=30%–80%),水的存在能够显著提高Pt/Fe_3O_4催化剂的甲醛催化氧化性能.采用各种表征技术对Pt/Fe_3O_4的结构、形貌、价态及氧化还原性等物理化学性质进行了研究.结果表明:采用该合成方法能够得到粒径较为均一、具有尖晶石结构和八面体形貌的Fe_3O_4亚微米晶,尺寸较小的Pt纳米粒子(平均2.5 nm)均匀分布在八面体Fe_3O_4晶体的表面,且Fe_3O_4载体表面还存在一定量的羟基物种.随着热处理温度的升高,催化剂表面的Pt物种和Fe物种的价态均发生明显变化.结果证实,Pt纳米粒子与Fe_3O_4载体间的相互作用力会随着热处理温度的升高而发生明显变化.对于性能较为优异的Pt/Fe_3O_4-80催化剂,Pt纳米粒子与Fe_3O_4载体之间存在着强度适宜的相互作用,能够产生相对较多的Pt-O-Fe Ox和Pt-OH-Fe Ox界面活性位,从而使其能够在较低的反应温度下表现出较强的活化分子氧的能力.此外,反应体系中引入的水分子能够与氧分子在界面活性位上共同活化,形成表面活性-OH物种,从而有效促进催化剂反应性能的提升.  相似文献   

16.
以硅磁粒子(Fe_3O_4@SiO_2)为核,采用低温-原位氧化聚合-共沉淀法制备了多层核壳聚苯胺硅磁复合物(Fe_3O_4@SiO_2@PANI).通过X射线衍射分析(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等对Fe_3O_4@SiO2_@PANI复合物的结构、形貌和性质进行了表征.以磺酸基偶氮染料甲基橙、刚果红和蒽醌染料茜素红溶液模拟染料废水,对其在Fe_3O_4@SiO_2@PANI上的吸附进行了研究,讨论了pH值、吸附时间、染料初始浓度及吸附剂用量对吸附过程的影响,优化了吸附条件.实验结果表明,弱酸性(p H6. 0)条件下,Fe_3O_4@SiO_2@PANI对甲基橙、刚果红和茜素红具有优异的选择性吸附性能,其平衡吸附量分别为26. 05,34. 0和69. 58 mg/g.该复合物对染料的吸附过程更接近Langmuir等温吸附的单分子层吸附机理,其对染料废水的去除率高达96. 5%,易于分离,且重复使用性能良好.  相似文献   

17.
以四氧化三铁(Fe_3O_4)、丙烯酰胺(AM)、丙烯酸(AA)、丙烯腈(AN)为原料,采用反相乳液聚合法和沉淀聚合法制备核-壳结构的磁性凝胶微球调剖剂P(AA-AM-AN)/Fe_3O_4.利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和振动样品磁强计(VSM)对P(AA-AM-AN)/Fe_3O_4进行了表征,研究了不同制备条件下调剖剂的吸水溶胀性能,探讨了其在模拟地层环境条件下的堵水调剖性能.研究结果表明,制备的具有超顺磁性的P(AA-AM-AN)/Fe_3O_4复合微球可实现磁性分离回收处理.由于疏水性聚丙烯腈的存在,所制备的磁性微球调剖剂具有良好的运送特性.当m(AN)∶m(P(AA-AM)/Fe_3O_4)为1.25∶1时,P(AA-AM-AN)/Fe_3O_4的吸水性能最优,吸水倍率高达82.8 g/g.另外,P(AA-AM-AN)/Fe_3O_4的吸水倍率随油藏地层水温度的增加而逐步增大,随NaCl含量的增加而逐渐降低.  相似文献   

18.
作为固体推进剂的重要组分,单质炸药有助于提升固体推进剂能量特性,且其热分解性能显著影响推进剂的燃烧特性。1,1’-二羟基-5,5’-联四唑二羟胺盐(TKX-50)兼具高能和低感度(摩擦和冲击感度)的特性,在固体推进剂领域中具有较好的应用前景。纳米催化剂的添加可显著调节单质含能材料的热分解性能,进而影响推进剂的燃烧性能。而目前纳米级催化剂较少被用于TKX-50热分解的研究中,且未涉及催化剂形貌影响TKX-50热分解性能的相关研究。基于Fe_2O_3对TKX-50热分解较好的催化性能,通过溶剂热法合成了两种形貌(球形和管状)的纳米Fe_2O_3颗粒,并通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)等对其形貌、组成和结构进行表征。XRD、FTIR和XPS证实了Fe_2O_3的成功制备,SEM和TEM图显示球形Fe_2O_3样品由110 nm的Fe_2O_3颗粒团聚而成;管状Fe_2O_3表现出中空结构,平均直径为120 nm,长为200 nm。采用热重分析(TG)和差示扫描量热分析(DSC)研究了管状和球形Fe_2O_3对TKX-50热分解的催化性能,并通过等转化率法计算了热分解活化能。结果表明,两种形貌的Fe_2O_3均可有效促进TKX-50热分解,而管状Fe_2O_3的催化效果更佳,可显著降低TKX-50的分解峰温和活化能。管状Fe_2O_3更好的催化性能来自于其中空结构可提供更多的催化活性位点,有助于TKX-50的热分解。  相似文献   

19.
周春于  杨俊玲  于振东 《化学通报》2018,81(10):914-918,923
以废弃的虾壳为原料制备壳聚糖,以壳聚糖为壳、磁性Fe_3O_4为核、液体石蜡为分散剂、T-80为乳化剂、戊二醛为交联剂制备了纳米Fe_3O_4@壳聚糖材料。利用扫描电镜、热重分析仪、红外光谱仪、X射线衍射仪对其进行了表征。结果显示,纳米Fe_3O_4@壳聚糖材料为表面光滑的球形结构,直径约75.82nm,壳聚糖和Fe_3O_4的质量比为2∶1。吸附动力学实验研究表明,纳米Fe_3O_4@壳聚糖材料对Cu~(2+)吸附符合准二级动力学,以化学吸附为主,平衡吸附容量为17.32mg/g。吸附等温线实验研究表明,吸附符合Freundlic模型,纳米Fe_3O_4@壳聚糖材料与Cu~(2+)之间的交互作用强烈,最大吸附容量为213.68mg/g。  相似文献   

20.
通过原位反应合成法成功合成了一种新型水溶性的磁性荧光复合纳米粒子Fe_3O_4@SiO_2@ZrO_2∶Tb~(3+),并通过扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)、红外光谱仪(FT-IR)、磁性测试仪和荧光(PL)光谱对其形貌、尺寸、相组成、磁性和荧光性能进行了表征。结果表明,核(Fe_3O_4@SiO_2)壳(ZrO_2∶Tb~(3+))结构组成的磁性荧光复合纳米粒子具有超顺磁性,其饱和磁化强度达到36 emu/g,并且在494 nm(~5D_4→~7F_6)、549 nm(~5D_4→~7F_5)、587 nm(~5D_4→~7F_4)和625 nm(~5D_4→~7F_3)处具有4个Tb~(3+)特有的荧光发射光谱带峰值。磁性荧光双功能的复合纳米粒子在生物医学领域具有潜在的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号