首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
泡沫镍载钌催化硼氢化钠水解制氢   总被引:1,自引:0,他引:1  
应用化学镀法制备泡沫镍载钌(Ru)催化剂,以其用于燃料电池硼氢化钠(NaBH4)水解即时供氢.该催化剂具有稳定高效的活性和稳定性能,而泡沫镍的预处理是一重要步骤.研究了制氢过程中NaBH4浓度、反应温度及使用次数对产氢速率的影响.结果表明:产氢速率随温度的升高快速上升,当反应温度从15℃升高到60℃,产氢速率增加了十几倍;在NaBH4浓度为20%的3%NaOH溶液中,使用载Ru量为3%的催化剂,于23.5℃常压下,水解NaBH4,其产氢速率达到0.784 mL.s-1.g-1.这种容易制备的催化剂在多次使用后仍显示出较高的活性.  相似文献   

2.
以纳米碳纤维(CNFs)为基体材料,采用化学镀法在CNFs表面沉积了Ni-Co-P催化剂。研究了催化剂用量,硼氢化钠、氢氧化钠浓度,温度等对碱性硼氢化钠溶液水解释氢的影响。电感耦合等离子体原子发射光谱法(ICP-AES)测试得出负载型Ni-Co-P催化剂含镍13.30%(质量分数,下同)、钴82.25%、磷4.45%。硼氢化钠水解释氢实验结果表明,产氢速率与催化剂用量呈线性关系。当温度为45 ℃、催化剂浓度为7.5 g/L、氢氧化钠浓度为5%、硼氢化钠浓度为2.5%时,氢气释放速率达到最大值18.044 L/(g·min)。通过对负载型催化剂Ni-Co-P/CNFs催化碱性硼氢化钠溶液释放氢气动力学研究表明,该催化剂的活化能Ea为51.57 kJ/mol。  相似文献   

3.
宗玥 《分子催化》2014,(4):336-343
将导热性能良好的泡沫铝作为载体,羰基钌为前驱体制备了一系列不同形态的钌基催化剂应用于N2O的低温催化分解研究.采用XRD、XPS、SEM、TEM、BET、H2-TPR等方法对催化剂进行了表征,于石英管固定床反应器上对催化剂性能进行了评价.重点考察了泡沫铝作为催化剂载体的可行性、载体的处理方法对催化剂活性的影响以及RuO2、Ru、Ru3(CO)12所表现出的活性差异.结果表明:泡沫铝作为催化剂载体,能够促进N2O的催化分解;泡沫铝经H2O2处理有利于提高其对活性中心的附着力,提高催化活性;N2O浓度为1%,Ru负载量为0.3%,活性中心分别为Ru3(CO)12、Ru、RuO2时,N2O完全转化温度依次为285、380和415℃;活性较高的Ru3(CO)12/泡沫铝催化剂在长时间作用后活性组分转变为RuO2.  相似文献   

4.
罗小军  王榕  倪军  林建新  魏可镁 《化学学报》2009,67(22):2573-2578
采用6种沉淀剂通过共沉淀法制备了6种Ru/CeO2氨合成催化剂, 考察了沉淀剂种类对其氨合成性能的影响. 通过X射线衍射、N2吸附-脱附、X射线荧光光谱和H2程序升温还原等表征手段, 对不同沉淀剂影响Ru/CeO2催化剂氨合成性能的原因进行探讨. 结果表明: 采用(NH4)2CO3和NH4HCO3制备的催化剂样品具有较好的氨合成活性, 其中NH4HCO3为最佳沉淀剂, 所制备的催化剂在450 ℃, 10 MPa , 10000 h-1测试条件下, 出口氨浓度为14.46%. 而采用KHCO3, KOH, K2CO3沉淀剂制备的样品的氨合成活性相对较低. 沉淀剂种类不仅明显地影响钌离子和铈离子的共沉淀, 而且会影响载体二氧化铈表面氧的还原. 由NH4HCO3沉淀剂制备的Ru/CeO2催化剂的高活性归因于钌负载量增大、钌粒子分散度提高以及二氧化铈表面氧易还原三者相互作用的结果.  相似文献   

5.
将三聚氰胺、RuCl3及炭黑以一定的比例分散于乙醇中,采用旋转蒸干及高温热处理合成了一种氮掺杂碳(NC)负载Ru的Ru/NC 催化剂。采用硼氢化钠液相化学还原法合成了不同 Pt、Ru 负载量的 PtRu/NC 催化剂,并用于电催化甲醇氧化反应(MOR)及电催化分解水析氢反应(HER)。结果表明,合成的催化剂中 Pt1Ru/NC(Pt、Ru的实际负载量分别为 1.14%、0.54%)表现出最优的MOR性能,质量活性达4.96 A·mg-1PtRu,且经10 000 s稳定性测试后质量活性保持在测试前的91.1%。同时,当电流密度为100 mA·cm-2时,Pt1Ru/NC在HER中表现出最低的过电位(103 mV)和最小的Tafel斜率(15.29 mV·dec-1)。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、电感耦合等离子体发射光谱(ICP‐OES)、STEM‐能谱(STEM‐EDS)技术PtRu/NC双金属催化剂,其具有优异催化性能的原因如下:(1) PtRu双金属纳米颗粒高度分散于NC上;(2) Pt以纳米团簇或单原子形式负载于Ru上,后负载于NC,形成了Pt‐Ru相分离结构;(3) Pt、Ru与N之间存在协同效应。  相似文献   

6.
将三聚氰胺、RuCl3及炭黑以一定的比例分散于乙醇中,采用旋转蒸干及高温热处理合成了一种氮掺杂碳(NC)负载Ru的Ru/NC催化剂。采用硼氢化钠液相化学还原法合成了不同Pt、Ru负载量的PtRu/NC催化剂,并用于电催化甲醇氧化反应(MOR)及电催化分解水析氢反应(HER)。结果表明,合成的催化剂中Pt1Ru/NC(Pt、Ru的实际负载量分别为1.14%、0.54%)表现出最优的MOR性能,质量活性达4.96 A·mg-1PtRu,且经10 000 s稳定性测试后质量活性保持在测试前的91.1%。同时,当电流密度为100mA·cm-2时,Pt1Ru/NC在 HER中表现出最低的过电位(103 mV)和最小的 Tafel斜率(15.29 mV·dec-1)。通过 X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、电感耦合等离子体发射光谱(ICP-OES)、STEM-能谱(STEM-EDS)技术表征了PtRu/NC双金属催化剂,其具有优异催化性能的原因如下:(1) PtRu双金属纳米颗粒高度分散于NC上;(2) Pt以纳米团簇或单原子形式负载于Ru上,后负载于NC,形成了Pt-Ru相分离结构;(3) Pt、Ru与N之间存在协同效应。  相似文献   

7.
采用无有机模板剂一步法制备了Ru/ZSM-5催化剂,利用X射线衍射、N2吸附-脱附、NH3-程序升温脱附和CO2-程序升温脱附、扫描电镜和透射电镜等方法对催化剂进行了表征.考察了反应温度、钌负载量和催化剂重复利用等因素对Ru/ZSM-5上葡萄糖加氢反应性能的影响,并与浸渍法制备的Ru/ZSM-5催化剂进行了对比.结果表明,与传统浸渍法相比,一步法制备的Ru/ZSM-5催化剂钌粒子具有更高的分散性和稳定性.在120℃和4 MPa的温和反应条件下,葡萄糖接近完全转化,山梨醇选择性高达99.2%,催化剂可重复利用5次,仍保持较高活性.  相似文献   

8.
氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO_2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B_5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B_5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0 nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm~(-2)时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d_(5/2)的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm~(-2)时,钌金属传递电子给氧化铈,此时Ru 3d_(5/2)结合能有所增加;当钌表面密度高于1.4 Ru nm~(-2)后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d_(5/2)结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm~(-2)以及约为2.1 Ru nm~(-2)时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导.  相似文献   

9.
采用无有机模板剂一步法制备了Ru/ZSM-5催化剂,利用X射线衍射、N_2吸附-脱附、NH_3-程序升温脱附和CO_2-程序升温脱附、扫描电镜和透射电镜等方法对催化剂进行了表征.考察了反应温度、钌负载量和催化剂重复利用等因素对Ru/ZSM-5上葡萄糖加氢反应性能的影响,并与浸渍法制备的Ru/ZSM-5催化剂进行了对比.结果表明,与传统浸渍法相比,一步法制备的Ru/ZSM-5催化剂钌粒子具有更高的分散性和稳定性.在120℃和4 MPa的温和反应条件下,葡萄糖接近完全转化,山梨醇选择性高达99.2%,催化剂可重复利用5次,仍保持较高活性.  相似文献   

10.
王巍  刘晶晶  张龙 《应用化学》2013,30(4):389-393
以自制的乙酰丙酮钌配合物(Ru(acac)3)为催化剂,甲酸钠为氢供体,十六烷基三甲基溴化铵为乳化剂,研究了水溶液中催化硝基苯氢转移氢化制苯胺的工艺。 确定了适宜反应条件为:甲酸钠和硝基苯摩尔比为2∶1,反应温度80 ℃,反应时间4.0 h,Ru(acac)3用量为硝基苯质量的4%。 硝基苯的转化率和苯胺产率分别为100%和96.65%,表明Ru(acac)3对硝基苯氢转移氢化制苯胺具有优异的催化作用。  相似文献   

11.
Ruthenium(III) acetylacetonate was employed for the first time as homogeneous catalyst in the hydrolysis of sodium borohydride. Ruthenium(III) acetylacetonate was not reduced by sodium borohydride under the experimental conditions and remains unchanged after the catalysis. Poisoning experiments with mercury and trimethylphosphite provide compelling evidence for the fact that ruthenium(III) acetylacetonate is indeed a homogenous catalyst in the hydrolysis of sodium borohydride. Kinetics of the ruthenium(III) acetylacetonate catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration, and temperature. The hydrogen generation was found to be first order with respect to both the substrate concentration and catalyst concentration. The activation parameters of this reaction were also determined from the evaluation of the kinetic data: activation energy; Ea = 58.2 ± 2.6 kJ mol−1, the enthalpy of activation; ΔH# = 55.7 ± 2.5 kJ mol−1 and the entropy of activation ΔS# = 118 ± 5 J mol−1 K−1. Ruthenium(III) acetylacetonate was found to be highly active catalyst providing 1200 turnovers over 180 min in hydrogen generation from the hydrolysis of sodium borohydride before deactivation.  相似文献   

12.
将PdAg纳米颗粒负载到MIL-101(Fe)上作为硼氢化钠水解制氢的催化剂。采用XRD、TEM、HRTEM、XPS、SEM和EDS等方法对催化剂PdAg/MIL-101(Fe)的结构进行了表征。PdAg/MIL-101(Fe)在硼氢化钠水解制氢中表现出较高的催化活性,在温和的条件下水解制氢最大速率为2.60 L·min–1·gcat.–1。详细研究了反应温度、催化剂用量、氢氧化钠和硼氢化钠浓度对该催化反应的影响规律。结果发现,制氢速率很大程度上依赖于反应温度,随着反应温度的升高,制氢速率明显增加,制氢的表观活化能为54.89 kJ·mol–1。该催化剂重用性能好,5次循环后仍能保持活性。  相似文献   

13.
Ru/ZrO2·xH2O催化喹啉加氢反应   总被引:1,自引:0,他引:1  
制备了负载型催化剂Ru/ZrO2·xH2O, 并用XRD、XPS和TEM对催化剂进行了表征, 所制得的催化剂金属钌的平均粒径约为3.8 nm. 在2 MPa和40 ℃的温和条件下, 以水为溶剂时, Ru/ZrO2·xH2O催化喹啉加氢生成1,2,3,4-四氢喹啉的选择性达98.0%, 而且表现出较强的抗氮中毒能力, 催化剂循环使用性能稳定. 对喹啉加氢反应中的催化反应机理进行了探讨.  相似文献   

14.
采用化学还原法以乙醇为溶剂在冰水浴中合成了一系列Co1-xNixB合金催化剂,研究了该系列合金不同Ni含量对NaBH4水解放氢性能的影响.X射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)显示Co1-xNixB合金是纳米非晶态颗粒.放氢测试表明Co1-xNixB具有很高的催化活性.放氢速率先随着Ni含量的增加而增大,并在x=0.15时放氢速率达到最大值,然后随x值的增加而减小.298K时Co0.85Ni0.15B合金催化碱性硼氢化钠水解的最大放氢速率可达4228mL·min-1·g-1,CoB和Co0.85Ni0.15B合金催化放氢的活化能分别为34.25和31.87kJ·mol-1.因此以乙醇为溶剂合成的Co1-xNixB合金具有较高的催化活性.  相似文献   

15.
由ZrO(NO3)2水解得到的ZrO(OH)2水凝胶经碱液回流老化、焙烧后制备了改性ZrO2载体材料,直接浸渍K2RuO4溶液,经还原后用于催化氨合成反应。并运用X射线衍射(XRD)、CO2 程序升温脱附(CO2-TPD)、X射线荧光光谱 (XRF)、N2物理吸附、H2程序升温还原技术(H2-TPR)和CO化学吸附对其进行了表征,重点考察了催化剂性能与载体性能间的构效关系。结果表明,KOH和NH4OH溶液回流均可提高载体的比表面积,但是KOH回流制备的载体同时还具有较强的碱性,因此,负载钌以后表现出最佳活性。在425 ℃、5 MPa、空速为10 000 h-1条件下,出口氨浓度为5.96%,分别较催化剂K-Ru/ZrO2-NH4OH、K-Ru/ZrO2-CP和Ru/ZrO2-NH4OH提高了11%、143%和103%。与活性组分分散度相比,载体碱性强度对活性的促进作用更为明显。  相似文献   

16.
负载型Pd基催化剂是最有效的甲酸分解(FAD)制氢催化剂之一,其中氮化碳载体的N含量较高,但是通常一步热解法制备的氮化碳为块状,难以有效分散表面金属纳米粒子(NPs)。 本文通过将尿素前驱体在溶剂化作用后热解得到功能化氮化碳,以此为载体,利用阴离子交换和硼氢化钠直接还原法制备了功能化氮化碳负载的Pd基催化剂(Pd/C3N4-F)。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对材料结构进行表征,并通过气体质量流量计测试了催化剂的性能。 Pd/C3N4-F具有优异的催化FAD制氢性能,30 ℃下的初始TOF(总转换频率)值和质量比活性分别为1824 h-1和17.14 molH2/(gPd·h)。 对产物的气相色谱分析结果也表明没有副产物CO生成,表明催化剂具有优异的选择性。 并且随着温度的升高(30~40 ℃),催化剂性能逐渐提高。  相似文献   

17.
采用水热法对天然铝土矿进行改性,获得高比表面积的铝土矿(bauxite)载体.用等体积浸渍法制备了Ru含量为1.0%-4.0%(质量分数,下同)的Ru/bauxite催化剂和Ru含量为2.0%的Ru/Al2O3催化剂,以水煤气变换反应为探针反应,考察了催化剂性能.利用X射线荧光元素分析(XRF)、X射线粉末衍射(XRD)、低温N2物理吸附、H2程序升温还原(H2-TPR)以及CO程序升温脱附(CO-TPD)等对载体和催化剂样品进行表征.结果表明,不同Ru含量的Ru/bauxite催化剂具有优异的水煤气变换制氢性能,优于Ru/Al2O3催化剂.其原因是铝土矿本身含有的Fe2O3与负载的Ru之间发生了相互作用,降低了Fe2O3还原温度,提高了对CO的吸附能力且降低了CO的脱附温度,进而提高了催化剂的水煤气变换反应性能.  相似文献   

18.
Nanostructured PtRu/C catalysts have been prepared from a water-in-oil pseudomicroemulsion with the aqueous phase of a mixed concentrated solution of H(2)PtCl(6), RuCl(3), and carbon powder, oil phase of cyclohexane, ionic surfactant of sodium dodecylbenzene sulfonate (C(18)H(29)NaO(3)S), and cosurfactant n-butanol (C(4)H(10)O). Two different composing PtRu/C nanocatalysts (catalyst 1, Pt 20 wt %, Ru 15 wt %; catalyst 2, Pt 20 wt %, Ru 10 wt %) were synthesized. The catalysts were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis, and the particles were found to be nanosized (2-4 nm) and inherit the Pt face-centered cubic structure with Pt and Ru mainly in the zero valance oxidation state. The ruthenium oxide and hydrous ruthenium oxide (RuO(x)()H(y)()) were also found in these catalysts. The cyclic voltammograms (CVs) and chronoamperometries for methanol oxidation on these catalysts showed that catalyst 1 with a higher Ru content (15 wt %) has a higher and more durable electrocatalytic activity to methanol oxidation than catalyst 2 with low Ru content (10 wt %). The CV results for catalysts 1 and 2 strongly support the bifunctional mechanism of PtRu/C catalysts for methanol oxidation. The data from direct methanol single cells using these two PtRu/C as anode catalysts show the cell with catalyst 1 has higher open circuit voltage (OCV = 0.75 V) and maximal power density (78 mW/cm(2)) than that with catalyst 2 (OCV = 0.70 V, P(max) = 56 mW/cm(2)) at 80 degrees C.  相似文献   

19.
采用不同沉淀剂制备了MgO材料,以其为载体制备了Ba-Ru/MgO氨合成催化剂,考察了沉淀剂种类和BaO助剂对其氨合成性能的影响.通过X射线衍射(XRD)、N2物理吸附、X射线荧光光谱(XRF)、透射电镜(TEM)、H2程序升温还原(H2-TPR)、CO2程序升温脱附(CO2-TPD)、H2程序升温脱附(H2-TPD)和N2程序升温脱附(N2-TPD)表征手段,对不同沉淀剂影响Ba-Ru/MgO催化剂氨合成性能的原因进行了探索.结果表明:采用(NH4)2CO3作沉淀剂制备的Ba-Ru/MgO催化剂表面Ru物种易于在低温下还原,催化剂表面在低温区具有较多数量的弱碱性吸附位,在450℃、5.0 MPa和5 000 h-1条件下,由(NH4)2CO3做沉淀剂制备的Ba-Ru/MgO催化剂活性最高,出口氨浓度为3.74%.BaO助剂的加入大大减少了Ba-Ru/MgO催化剂表面吸附氢的数量,增大表面脱附氮的数量,从而易于N2解离吸附,提高氨合成反应速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号