首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
原油、沥青中的各种微量元素信息已被应用于油气勘探和油气地球化学研究,然而相关的分析方法较少,而且前处理过程繁琐。本文将微波消解法应用于沥青样品的消解,建立了微波消解-电感耦合等离子体质谱法测定16种稀土元素的方法。不同组合消解试剂优化实验研究表明,HNO3-HF作为消解试剂效果最好,并讨论了样品量、消解条件、质谱干扰等影响因素。该方法样品处理简单,并应用于实际样品的分析,方法的精密度(RSD,n=8)小于6.2%,稀土元素检出限在0.0001~0.013μg/g之间,标准样品分析结果均在推荐值误差范围之内,为沥青类样品中稀土元素分析测定提供了新的参考方法。  相似文献   

2.
建立了电感耦合等离子体质谱(ICP-MS)法测定中药材中16种稀土元素的分析方法。采用微波消解对样品进行前处理,以115In作为内标消除基体干扰。16种稀土元素方法检出限为0.50~8.63μg/kg,在高、中、低3个添加水平下,平均回收率为70.5%~105.8%,相对标准偏差为0.6%~14.0%(n=8)。该方法可用于根茎类、叶类、花类、果实及种子类、全草类和皮类等多种中药材中16种稀土元素含量的测定。  相似文献   

3.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法.将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L-1硼酸溶液10 mL,继续在12...  相似文献   

4.
以市场销售的桃为实验材料,利用微波消解电感耦合等离子体质谱法(ICP-MS)同时测定桃中稀土元素的含量。样品经过硝酸-氢氟酸-双氧水微波消解,实现了桃中16种稀土元素的测定。各元素的检出限在0.004~0.020μg·g-1之间,方法精密度在0.78%~2.96%,回收率在95.0%~106.0%之间。比较了稀土元素在果皮和果肉中的分布。结果表明,稀土元素在果皮中的含量明显高于果肉。本法快速、准确,可用于桃等水果中稀土元素的测定。  相似文献   

5.
电感耦合等离子体质谱法测定花生中稀土元素   总被引:1,自引:0,他引:1  
本文建立了微波消解-八极杆碰撞/反应池(ORS)电感耦合等离子体质谱法(ICP-MS)同时测定花生仁中的La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 14种稀土元素的分析方法。样品经微波消解后,在线加入103 Rh内标元素有效消除了非质谱干扰,选用八极杆碰撞/反应池技术有效地消除了质谱干扰。氦碰撞反应气流速为4.5mL/min时背景等效浓度(BEC)最低。结果表明,选择体积比4∶1的HNO3-H2O2体系微波消解充分,14种稀土元素的检出限小于0.0011ng/mL,相对标准偏差(RSD)低于2.60%。该方法具有简单、快速、准确的特点,可作为花生中稀土元素同时测定的可靠方法。  相似文献   

6.
样品经硝酸-氢氟酸-硫酸三酸消解后,以103 Rh为内标,采用电感耦合等离子体质谱法测定高岭土中的15种稀土元素。采用标准物质制备工作溶液绘制校正工作曲线消除质谱干扰,通过控制样品的稀释因子消除非质谱干扰。各元素的线性范围为0.20~200mg·kg^(-1),检出限在0.03~0.09 mg·kg^(-1)之间。方法用于分析岩石标准物质,测定值与认定值的相对误差在-6.7%~8.3%之间,相对标准偏差(n=5)在0.70%~5.9%之间。实际样品中15种稀土元素的测定值的相对标准偏差在3.8%~12%之间。  相似文献   

7.
8.
采用电感耦合等离子体质谱法测定养生保健汤料包中16种稀土元素。采用硝酸-过氧化氢混合液为消化剂对样品进行微波消解,利用电感耦合等离子体质谱法测定16种稀土元素。16种稀土元素的质量浓度在1.0~80μg·L-1范围内呈线性,检出限(3S/N)为0.1~1.7μg·kg-1。方法用于标准物质的分析,测定值与认定值相符。按方法分析样品做精密度试验,测定值的相对标准偏差(n=10)小于5%。方法用于测定12种养生保健汤料中稀土氧化物含量总和在0.127~0.984 mg·kg-1之间。  相似文献   

9.
通过测定不同年份,同年不同月份采收的人参根、茎和叶中稀土元素(RE′s)的含量,研究稀土元素在人参中分配规律。样品经硝酸和过氧化氢微波消解后,以Re、Rh元素为内标,用电感耦合等离子体质谱法测定~(89)Y、~(139)La、~(140)Ce、~(141)Pr、~(146)Nd、~(147)Sm、~(151)Eu、~(157)Gd、~(159)Tb、~(163)Dy、~(165)Ho、~(166)Er、~(169)Tm、~(172)Yb和~(175)Lu共15种稀土元素在人参根茎叶中的含量。15种稀土元素的检出限在0.24~2.46μg·kg~(-1)之间。稀土元素在人参叶中含量最高,根部居中,茎中最少,在人参根中具有逐年累积的趋势。  相似文献   

10.
电感耦合等离子体质谱法测定生物样品中稀土元素   总被引:13,自引:0,他引:13  
采用电感耦合等离子体质谱法测定了生物样品中的稀土元素,稀土元素的氧化物离子产率随入射功率和采样深度增加,载气流速减小而降低。在选择的测量条件下,^14Pr^16O对^157Gd的测定可产生严重干扰,必须校正,当样品中钡含量较高时,应考虑校正^135Ba对^151Eu的干扰。生物样品的主要基体元素K、Na和Ca在浓度较高时,对稀土元素的信号强度均表现出抑制效应,且Ca的抑制程度大于K和Na。比较了干  相似文献   

11.
采用微波消解前处理方法,结合电感耦合等离子体质谱技术,建立了板栗中钠(Na)、钾(K)、镁(Mg)、锰(Mn)、铁(Fe)、钒(V)、钴(Co)等19种矿物元素及镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y)等15种稀土元素的同时分析测定方法。该方法检出限为0.0027~0.78μg?L-1,相对标准偏差为1.4%~6.3%。通过国家标准物质GBW10019苹果的准确率实验验证,测定结果均在标准证书值范围内。实验结果表明,该方法适用于板栗中矿物元素及稀土元素的同时测定。  相似文献   

12.
金绿宝石结构稳定,常规敞开酸溶、密闭酸溶、微波消解三种前处理方法并不能将其完全分解,测定结果偏低。本文采用碳酸钠-硼酸混合熔剂进行熔融,样品分解完全,建立了电感耦合等离子体质谱法(ICP-MS)测定金绿宝石中16种痕量稀土元素的分析方法。选择丰度高、干扰小的同位素、动能歧视碰撞池(KED)模式及干扰系数校正法消除质谱干扰,以185Re为内标元素及样品稀释降低基体干扰。实验表明:各稀土元素的校准曲线相关系数r值在0.9991~0.9998之间,方法检出限为0.0001~0.0134 μg/g,定量限为0.0005~0.0670 μg/g。采用国家标准物质GBW07151验证方法的精密度,计算出相对标准偏差(RSD, n=7)在1.3%~4.6%之间,并将此方法用于金绿宝石实际样品中稀土元素的测定,RSD为0.9%~3.2%,加标回收率为94%~104%,符合国家地质矿产行业标准,结果稳定、可靠。  相似文献   

13.
建立了一种电感耦合等离子体质谱法测定银菊珍珠胶囊中稀土元素的方法。利用该方法分析了国家一级灌木枝叶标准物质(GBW 07603)和国际柑橘叶标准物质(NIST1572)中的稀土元素,结果与标准值一致。该方法已被用于分析银菊珍珠肢囊样品中的稀土元素。  相似文献   

14.
采用稀王水溶解样品,选择La408.672 nm、Ce456.236nm为分析线,建立了电感耦合等离子体原子发射光谱法(ICP-OES)测定稀土钢中微量镧、铈的方法。结果表明,各元素校准曲线线性良好,相关系数可达0.99999;方法测定范围为:0.0001%~0.10%。检出限为:镧0.00002%,铈0.00006%。按照实验方法测定标样中镧、铈,结果的相对标准偏差RSD(n=8)为2.18%、1.68%。  相似文献   

15.
为快速、准确测定韭菜中多元素含量,采用微波消解法对韭菜中样品进行消解处理,优化了前处理方法、ICP-MS工作条件和检测方法,利用微波消解-电感耦合等离子体质谱法测定韭菜中Pb、Cd、Se、As、Zn、Cu、Ni、Fe、Cr、Ca、K等11种元素含量。结果表明,在硝酸-双氧水(7:1)体系中,消解功率1550W,温度梯度为120℃-160℃-195℃,总时长为45min,赶酸温度选择150℃,可将韭菜完全消解,并且ICP-MS射频功率设为1550W,运用在线内标的检测方式降低非质谱干扰。11种元素回归系数R2均大于0.999,方法检出限为0.002~0.100μg/kg,方法定量限为0.006~0.300μg/kg。方法回收率88.0%~102.7%,相对标准偏差为1.8%~4.6%,可以满足韭菜中多种元素同时测定的需求。方法具有灵敏度高、线性范围宽、准确性高等特点,可为韭菜样品的多元素同时测定提供可靠的方法支撑。  相似文献   

16.
建立电感耦合等离子体质谱法测定手机壳套中14种可迁移元素含量的方法。样品经人工模拟汗液溶液振荡处理,使14种特定元素迁移至模拟溶液中,然后进行微波消解,采用电感耦合等离子体质谱法对消解液进行测定。14种元素在各自的质量浓度范围内具有良好的线性关系,相关系数均大于0.999,方法检出限为0.004~0.400μg/L。样品加标回收率为88.2%~99.5%,测定结果的相对标准偏差为2.5%~9.3%(n=5)。该方法操作简便,灵敏度高,线性范围广,定量准确,适用于手机壳套中14种可迁移元素含量的测定。  相似文献   

17.
为了准确检测死后人体组织中金属元素含量,以铋(Bi)和铟(In)双内标在线校正仪器,采用微波消解-电感耦合等离子体质谱(ICP﹣MS)法同时测定死后人体肝、肾、肺、胃组织中镁(Mg)、铝(Al)、钙(Ca)、铬(Cr)、锰(Mn)、铁(Fe)、铜(Cu)、锌(Zn)、砷(As)、锶(Sr)、镉(Cd)、钡(Ba)、汞(Hg)、铊(Tl)、铅(Pb)等15种金属元素含量。结果线性良好,准确度高,加标回收率为82.1% ~ 116.3%,精密度相对标准偏差RSD≤3.42%。不同组织中元素含量的变异系数为27.0% ~ 224.2%,含量差异较大,为了探究不同组织中各金属元素之间的差异与关联性,对金属元素含量开展相关性分析和主成分分析并进行综合评价。结果表明,Cu和Zn等47对金属元素之间具备显著的相关性,相关系数最高达0.91(p<0.01),提取4个主成分,累计方差贡献率达72.942%,通过元素载荷值得出,Al、Mn、Fe、Cu、Zn、Cd等6种元素是死后人体组织15种元素中的主要特征金属元素。计算可知,肝脏中总体金属元素含量最高,其次是肾和肺,胃组织中总体金属元素含量最低。本研究采用的元素测定方法及基础数据的综合评价可以为法医金属元素中毒案件的检验鉴定提供方法参考和数据支撑。  相似文献   

18.
碘是活跃元素,价态多,各价态间易相互转化,使其具有熔点低、易挥发,严重记忆效应的独特性质,其分析一直是个挑战。传统方法如半熔法、高压密闭法等存在操作难度大、消解时间长、工作效率低等问题。通过采用硝酸-氢氟酸微波消解处理样品,并利用电感耦合等离子体质谱(ICP-MS)法测定碘含量,克服了传统碘分析方法的一列问题。研究了不同酸体系和赶酸时间对样品分解效率和挥发损失的影响,同时验证了不同冲洗液对降低碘记忆效应的效果。在此基础上,确定了最佳反应条件为7 mL硝酸 +1 mL氢氟酸混合酸比例,180 ℃赶酸控温程序,并采用2% NH3·H2O充当冲洗液,降低了ICP-MS测定过程中的记忆效应,提高测试的稳定性。为验证该方法的准确性和精密度,使用国家一级标准物质进行方法验证。结果表明,方法的准确度(?lgc)为0.001~0.004,相对标准偏差(RSD)为1.2%~3.4%,相关系数为0.999 8,检出限为0.17 mg/kg,定量限为0.54 mg/kg,表现出较好的准确度和精密度,满足规范要求。通过实际样品测试,进一步验证了该方法的可行性,实验结果表明相对偏差在1.6%~4.1%。该方法操作方便、试剂用量少、工作效率高,适用于测定黑土地地表基质调查样品,同时也为碘的快速、准确分析提供了一种可行的解决方案。  相似文献   

19.
采用封闭酸溶电感耦合等离子体质谱(ICP-MS)法测定岩石样品,分别对47种元素的测量结果不确定度进行评定。通过分析测试方法和测量条件,得到测量结果的不确定度主要由样品称量、样品溶液定容和样品溶液中元素浓度测量引入。在实验室质控条件下,对各不确定度分量进行评定和计算,其中随机因素导致的不确定度采用期间精密度试验综合评价,即采用A类方法评定。共完成了16个岩石国家标准物质(GBW 07103~GBW 07123)47种元素测量结果的不确定度合成,并参照GB/T 6379.2-2004,建立了含量w与扩展不确定度U之间的关系模型,运用这一关系模型可得到测量结果的不确定度估计值,只要测量过程本身或所使用的设备未变化,就不需要再重复进行不确定度评估。  相似文献   

20.
乌兰茶晶石属于富含稀土型矿物,能准确监测乌兰茶晶石中的稀土元素具有非常重要的意义。本文通过15组微波消解试剂条件实验及对超级微波消解仪工作参数的优化,最终确定采用硝酸-氟硼酸-磷酸体系在超级微波消解仪中260℃下加热30分钟进行样品消解,赶酸后用2%硝酸复溶, 建立了超级微波消解-电感耦合等离子体发射光谱法(ICP-OES)测定乌兰茶晶石中15种稀土元素的方法,整个过程高效、操作简便、无损失、无污染。利用ICP-OES进行测定,所选谱线无干扰、信背比高,校准曲线线性相关系数大于0.99995,测试结果准确,精密度<4.0%,加标回收率在91.3%-96.3%之间。该方法用于花岗岩(GBW07103)测试,测定值与标准值一致。结果表明,硝酸-氟硼酸-磷酸消解法磷酸法可替代碱溶法对乌兰茶晶石实际样品进行前处理,具有较好的稳定性和准确性,能满足实际应用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号