首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
肖文军  李朝晖  黄再波  谭松庭 《化学学报》2007,65(19):2097-2102
用电纺法制备了TiO2/P(VdF-HFP)(聚偏氟乙烯-六氟丙烯共聚物)杂化纤维微孔膜, 用SEM观察了杂化纤维微孔膜的形貌, 并测算了这类由超细纤维相互搭接而形成的微孔膜的孔隙率. 这种微孔膜吸附LiPF6/EC-DMC-EMC(碳酸乙烯酯-二甲基碳酸酯-碳酸甲乙酯)电解质溶液后得到凝胶聚合物电解质膜. 用电化学方法测试了聚合物电解质膜的离子电导率、锂离子迁移数等参数, 并研究了TiO2纳米晶的掺入对聚合物电解质电化学性能的影响. 结果表明, TiO2的掺入降低了P(VdF-HFP)聚合物基体的结晶度, 改善了凝胶聚合物电解质的低温电化学性能.  相似文献   

2.
以聚丙烯腈/二甲基亚砜/N,N'-二甲基甲酰胺三元体系为纺丝液、3℃水浴为接收介质,通过静电纺丝制备了具有纳米孔结构的静电纺聚丙烯腈多孔超细纤维.探讨了溶剂比例、接收介质、聚丙烯腈浓度、纺丝电压及接收距离等因素对纤维直径和表面孔隙率的影响.结果表明最佳制备条件为混合溶剂质量比1∶1、纺丝电压16 kV、聚丙烯腈浓度15 wt%、接收距离5 cm、纺丝速率0.7 mL/h、环境温度25℃、相对湿度40%~70%.在此条件下得到的聚丙烯腈多孔超细纤维直径在420~490 nm,平均直径468 nm,表面孔隙率3.4%,纤维内部形成大量孔径为8~30 nm的孔结构,且孔径分布均匀,孔形状相对一致.N2吸附脱附测试表明,聚丙烯腈多孔纤维的BET比表面积达43.86 m2/g,是相同直径无孔聚丙烯腈纤维比表面积理论值的6倍.通过研究聚丙烯腈/(二甲基亚砜+N,N'-二甲基甲酰胺)/水的三元相图,提出非溶剂致相分离是主要成孔机理.  相似文献   

3.
本文采用1-乙基-3-甲基咪唑六氟磷酸盐(EMIPF6)、六氟磷酸锂(LiPF6)和偏氟乙烯-六氟丙烯共聚物(P(VdF-HFP))为原料制得P(VdF-HFP)-EMIPF6-LiPF6体系离子液体凝胶聚合物电解质,选取碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)以及碳酸乙烯酯(EC)和碳酸丙烯酯(PC)混合物(EC-PC)作为离子液体凝胶聚合物电解质的添加剂,分别研究了它们对聚合物电解质膜电化学性能的影响。结果表明:加入EC-PC的P(VdF-HFP)-EMIPF6-LiPF6电解质膜的电化学窗口达到4.6 V,锂离子迁移数为0.44,30 ℃时离子电导率为1.65 mS·cm-1;而DEC、DMC、EMC对电解质膜的电化学稳定性、锂离子迁移数存在不良的影响,对离子电导率的提高不明显。研究了正极材料LiCoO2在P(VdF-HFP)-EMIPF6-LiPF6+EC-PC电解质中的充放电循环性能,其首次放电比容量达到116.5 mAh·g-1,充放电20次后,电池容量没有明显衰减。  相似文献   

4.
以聚偏氟乙烯(PVDF)和硅藻土为原料,通过静电纺丝法制备PVDF@硅藻土复合纤维膜,用于锂离子电池隔膜。 研究了隔膜的吸液率、热稳定性和电化学性能等。 添加硅藻土可有效提高复合膜的电解液吸收率和电化学性能,其中吸液率可达623.6%,相比于PVDF膜和聚丙烯(PP)膜具有优异的循环性能和倍率性能。  相似文献   

5.
通过静电纺丝和静电喷射技术, 将三氧化二铝(Al2O3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间, 制备出了具有“三明治”结构的P(VDF-HFP)/Al2O3/P(VDF-HFP)复合锂离子电池隔膜. 分析了隔膜的形态结构、 热收缩性能、 拉伸性能、 电化学性能以及隔膜在电池中的循环性能. 测试结果表明, 该复合隔膜比纯P(VdF-HFP)膜拥有更高的吸液率, 隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs). 该复合隔膜的拉伸强度在4 MPa左右, 相对应的断裂伸长率为261.57%. 复合隔膜在室温下的离子电导率为1.61×10-3 S/cm, 且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V). 在电池的循环测试中, 使用钴酸锂(LiCoCO2)作为正极材料, 由该复合隔膜组装的电池的首次放电比容量达到了理想的水平, 为145 mA·h·g-1.  相似文献   

6.
静电纺丝纳米纤维基凝胶聚合物电解质的研究进展   总被引:1,自引:0,他引:1  
凝胶聚合物电解质(GPEs)可以解决传统电池的漏液问题和低能量密度问题,提高电池的安全性能,使电池轻便化,薄型化和外形多样化。静电纺丝技术可以控制纤维的直径和孔隙率,平衡GPEs离子电导率和力学性能,实现两者的共同提高,引起众多学者的研究兴趣。重点对聚偏氟乙烯(PVDF)电纺膜基凝胶聚合物电解质和聚丙烯腈(PAN)电纺膜基凝胶聚合物电解质的制备工艺和性能的研究进展进行了介绍,并对静电纺丝纳米纤维基凝胶聚合物电解质存在的问题和研究方向进行了探讨。  相似文献   

7.
静电纺制备纳米孔结构聚乳酸(PLLA)超细纤维   总被引:1,自引:0,他引:1  
采用静电纺丝法制备了孔径为40~150 nm的PLLA纳米孔结构超细纤维,纳米孔不仅分布在纤维表面,而且存在于纤维内部.通过扫面电镜观察了纤维表面形貌.探讨了混合溶剂二氯甲烷/N,N-二甲基甲酰胺的比例、PLLA浓度、电场强度对PLLA纤维纳米孔大小、分布密度、深度的影响.结果表明通过调节PLLA溶液性质和纺丝参数,PLLA纤维的表面形貌可以在3种状态即光滑无孔、疏浅凹坑、密集深孔之间可控.二氯甲烷/N,N-二甲基甲酰胺比例为1∶4,PLLA浓度9%,电场强度1 kV/cm,环境温湿度分别为30℃和52%,静电纺丝所得PLLA超细纤维表面孔洞直径为150 nm,孔洞分布密集.纳米孔PLLA纤维形成的主要机理是由于静电纺丝过程中溶剂的快速挥发引起纤维表面温度急剧降低导致热致相分离而产生多孔结构.PLLA纤维膜的疏水性与纤维表面孔洞结构密切相关,纤维膜接触角最高可达146.6°.由于PLLA纤维的多孔结构,这种高疏水性的PLLA纤维膜能够快速、大量地吸油,90 s内吸收柴油达到90 g/g,25 min内可以达到145 g/g.  相似文献   

8.
用同轴静电纺丝制备了含有稀土铕配合物(Eu(TTA)3AA)的芯-壳结构的丁腈橡胶/聚乙烯吡咯烷酮(NBR/PVP)超细荧光纤维。考察了在外层PVP纺丝参数不变的情况下,改变芯层丁腈橡胶纺丝液的纺丝速度、Eu(TTA)3AA含量等对纤维形貌的影响。通过研究Eu(TTA)3AA-NBR/PVP同轴超细纤维中Eu(TTA)3AA微观结构、含量与纤维的荧光性能之间的关系,发现在同轴纤维形成过程中由于溶剂的快速挥发可使Eu(TTA)3AA形成无定形结构,进而在纤维中形成分子簇级别的分散,在Eu(TTA)3AA含量为30%时,同轴纤维比Eu(TTA)3AA粉末的荧光强度提高了2倍。  相似文献   

9.
通过静电纺丝和静电喷射技术,将三氧化二铝(Al_2O_3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间,制备出了具有"三明治"结构的P(VDF-HFP)/Al_2O_3/P(VDF-HFP)复合锂离子电池隔膜.分析了隔膜的形态结构、热收缩性能、拉伸性能、电化学性能以及隔膜在电池中的循环性能.测试结果表明,该复合隔膜比纯P(Vd F-HFP)膜拥有更高的吸液率,隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs).该复合隔膜的拉伸强度在4 MPa左右,相对应的断裂伸长率为261.57%.复合隔膜在室温下的离子电导率为1.61×10~(-3)S/cm,且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V).在电池的循环测试中,使用钴酸锂(LiCoCO_2)作为正极材料,由该复合隔膜组装的电池的首次放电比容量达到了理想的水平,为145 m A·h·g~(-1).  相似文献   

10.
首先采用静电纺丝制备聚丙烯腈/聚乙烯吡咯烷酮(PAN/PVP)纤维膜,再经水浸渍处理获得多孔聚丙烯腈(PPAN)纤维膜。通过傅里叶变换红外(FT-IR)光谱、热重分析(TGA)探究纤维成孔机理,采用X射线光电子能谱(XPS)研究多孔纤维膜中PAN与PVP分子间相互作用力;同时探究PAN与PVP质量比对多孔纤维膜形貌、比表面积、润湿性、力学性能、油/水分离性能的影响,并确定最佳配比。结果表明:当m(PAN)/m(PVP)=1∶2时,PPAN纤维膜具有较高的力学性能;对正己烷/水混合物的分离通量高达(46 318±3 879) L/(m2·h·bar)(1 bar=0.1 MPa),分离效率为(96.01±0.38)%;还实现了对不同种类油/水混合物的高效分离。此外,该PPAN纤维膜表现出优异的循环分离性能,经10次循环分离后,通量损失率仅为8.9%。  相似文献   

11.
采用静电纺丝的方法制备了ZnS:Mn/Polyvinylpyrrolidone复合纳米纤维.使用的溶剂为水、乙醇及DMF(N,N-Dimediylfommnide),的使用有助于制备较细的纤维,电纺溶液中随着聚合物PVP浓度降低,纤维的直径变小,当PVP质量分数为6.6%时,纤维的直径是80 nm,通过荧光显微镜和荧光...  相似文献   

12.
采用静电纺丝技术获得聚丙烯腈(PAN)纳米纤维, 选用聚乙烯吡咯烷酮(PVP)作为造孔剂, 在氮气气氛下1000 ℃高温碳化制备富介孔结构的含氮纳米碳纤维(MT-C). 研究结果表明, 当m(PVP)/m(PAN)为2∶1时, MT-C-0.4比表面积为190.8 m 2/g, 并且在0.05C倍率下首次放电比容量高达1269.4 mA·h/g, 在0.5C倍率下循环300周后比容量仍保持为658.3 mA·h/g, 每周容量衰减率为0.14%. 硫电极负载量为1 mg/cm 2时, MT-C表现出最佳的电化学性能.  相似文献   

13.
采用静电纺丝-溶胶凝胶法,以SnCl2、InCl3、聚乙烯吡咯烷酮(PVP)等为原料,乙醇胺为水解控制剂,合成了超细氧化铟锡(ITO)纳米纤维及富氧缺陷的ITO纳米颗粒.采用透射电子显微镜(TEM)、选区电子衍射(SAED)、扫描电子显微镜(SEM)、热重分析(TGA)、X射线衍射(XRD)、X射线电子能谱(XPS)、...  相似文献   

14.
一种新型凝胶态聚合物电解质的制备和性能   总被引:1,自引:0,他引:1  
采用一种新型胶联剂新戊二醇二丙烯酸酯(noepentyl glycol diacrylate, NPGDA)和聚偏氟乙烯-六氟丙烯(poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP), 液态电解液组成电解质混合溶液, 然后加入引发剂并加热引发聚合反应制备了一种具有互穿聚合物网络结构的凝胶态聚合物电解质, 可以用于制备聚合物锂离子二次电池. 考察了不同PVDF-HFP/NPGDA质量比对凝胶态聚合物电解质性能的影响. 结果表明, PVDF-HFP/NPGDA质量比可以影响凝胶态聚合物电解质的结构形貌、电化学特性以及聚合物锂离子二次电池的性能. 研究发现, 当m(PVDF-HFP)/m(NPGDA)=1:1时制备的凝胶态聚合物电解质具有较高的离子电导率和电化学稳定窗口, 室温下分别为6.99×10-3 S•cm-1和4.8 V(vs Li+/Li), 以其为电解质制备的聚合物锂离子二次电池具有较好的电化学性能.  相似文献   

15.
含稀土三元配合物高分子纳米纤维的制备与荧光性质研究   总被引:1,自引:0,他引:1  
将发光良好的稀土三元配合物Eu(TTA)3phen和Tb(AA)3phen复合到水溶性的聚合物PVP中.通过静电纺丝技术得到了具有荧光特性的聚合物纳米纤维,并用扫描电镜和透射电镜对产物的微观结构进行了研究.同时研究了其荧光激发和发射光谱及荧光寿命.荧光测试表明稀土配合物在聚合物纳米纤维中比其在粉末中有更高的发光强度及更长的荧光寿命,其原因可归结为聚合物链状结构使得配合物无辐射的分子运动的受限,聚合物纳米纤维为稀土配合物提供了一个稳定的环境.该纳米纤维在紫外激发光的照射下可以发射出很强的稀土配合物的特征红光和绿光.  相似文献   

16.
以低浓度的聚乙烯吡咯烷酮(PVP K90)负载模型药物亚甲基蓝(MB)作为芯液,醋酸纤维素(CA)负载模型药物盐酸四环素(TCH)作为鞘液,设置一定的纺丝参数,调整芯鞘流速比,利用同轴静电纺丝技术制备了串珠状纳米纤维膜F3、F4和F5(芯鞘流速比依次为0.5m L/h∶0.5m L/h、0.5m L/h∶1.0m L/h和0.5m L/h∶1.5m L/h)。通过场发射扫描电子显微镜(SEM)图像,对其形貌、珠粒直径和纤维直径进行表征和分析,结果表明随着鞘层流速的增加,纤维直径和珠粒直径也相应的增加。X-射线衍射分析仪(XRD)结果表明纺丝产物包含的MB和TCH尖锐的峰已经消失,证实了静电纺丝技术制备的纳米纤维中的聚合物与药物发生作用,形成了无定型的PVP-MB和CA-TCH聚合物。傅里叶变换红外光谱仪(FT-IR)结果显示F3除了两个平缓峰之外没有尖锐的峰,这表明其为非晶材料,MB和TCH都转变为非晶态,且与纳米纤维中的PVP K90及CA分子共存。加入两种模型药物制成的材料有联合控释双相给药的效果,探究了药物在珠状纳米纤维中的缓释过程。体外释药实验表明了F3中的MB在24小时内缓释...  相似文献   

17.
聚乙烯醇明胶混合水溶液的静电纺丝   总被引:1,自引:0,他引:1  
将聚乙烯醇与明胶混合水溶液进行静电纺丝,制备了聚乙烯醇与明胶混合超细纤维及其电纺膜,研究了混合纺丝液的组成对纺丝液的粘度、表面张力和电导率的影响,观察了纤维的微观形貌,并对电纺膜进行了差示扫描量热测定.结果表明:当混合液中明胶含量小于20 9/6时,静电纺丝可以稳定进行.随着明胶含量由5%逐渐增加至25%,混合超细纤维的平均直径先是由260nm逐渐下降至207 nm而后又逐渐增加至320 nm.明胶的含量低于15%时,不影响其混合电纺膜中PVA的结晶.  相似文献   

18.
黄再波  高德淑  李朝晖  雷钢铁  周姬 《化学学报》2007,65(11):1007-1011
以高压静电纺丝法制备了具有微孔结构的偏氟乙烯-六氟丙烯共聚物[P(VDF-HFP)]无纺布膜, 吸附离子液体3-乙基-1-甲基咪唑鎓四氟硼酸盐(EMIBF4)后成为凝胶聚合物电解质, 其室温离子电导率达到8.43 mS•cm-1, 初始热失重温度超过300 ℃. 以其为聚合物电解质的活性碳电极双电层电容器具有较好的电化学性能, 1.0 mA•cm-2恒流充放电500次循环后仍保持 90.67 F•g-1的比容量, 容量保持率为96.86%.  相似文献   

19.
在二氧六环/乙醇溶剂体系中,采用凝胶抽提相分离法制备了聚乳酸-聚己内酯(PLLA-PCL)复合纳米纤维支架,研究了凝胶温度、聚合物比例、聚合物浓度、致孔剂及二氧六环/乙醇(溶剂/非溶剂)比例对复合纳米纤维支架结构与性能的影响.结果表明,当凝胶温度处于-20~-10℃,PCL含量为30%~50%,非溶剂含量不超过15%,致孔剂与溶质质量比不超过20∶1时,均能得到具有类似于天然细胞外基质的纳米纤维(50~500 nm)结构的PLLA-PCL复合纤维支架.随着PCL含量的增加,复合纤维支架的弹性模量减小;PCL含量为30%时,复合支架的相容性和结晶性最好.该复合纤维支架具有良好的生物活性和一定的降解性能.  相似文献   

20.
以熔融纺丝聚氯乙烯(PVC)中空纤维多孔膜为增强体,聚偏氟乙烯(PVDF)为成膜聚合物,聚乙烯吡咯烷酮(PVP)为添加剂,N,N-二甲基乙酰胺(DMAc)为溶剂,配置铸膜液,采用同心圆牵引-涂覆法制备了异质增强型PVDF中空纤维膜.制备过程中,采用预湿溶液对增强体基膜表面进行预处理,研究了预湿溶液组成及含量对异质增强型PVDF中空纤维膜结构与性能的影响.结果表明,未经预湿处理的异质增强型PVDF中空纤维膜具有较厚的致密界面层;预湿溶液可对基膜表面孔起到保护作用,使异质增强型PVDF中空纤维膜的界面层变薄或形成多孔界面层,有益于改善增强型PVDF中空纤维膜的通透性能;与二甲基乙酰胺(DMAc)水溶液相比,以乙醇水溶液为预湿溶液所得异质增强型PVDF中空纤维膜的性能较优;当预湿液中乙醇含量为60 wt%时,所得增强型PVDF中空纤维膜的渗透性能较优,拉伸强度可达8.61 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号