首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用密度泛函理论方法,对四种β-O-4型二聚体木质素模型化合物2-(2-甲氧基苯氧基)-1-苯基乙烷-1-醇、2-(2-甲氧基苯氧基)-1-苯基乙烷-1-酮、1-甲氧基-2-(2-甲氧基-2-苯基乙氧基)苯、2-(2-甲氧基苯氧基)-1-苯乙基乙酸酯的C_(aromatic)-O、C_(aromatic)-C_α、C_α-C_β、C_β-O键均裂解离能进行了理论计算,并对所述二聚体的热解均裂历程进行了理论计算研究,分析了不同二聚体的热解产物形成途径。结果表明,C_β-O键均裂是二聚体初次热解的主要反应,C_α-C_β键均裂是竞争反应。C_α-OH官能团被氧化、乙酰化修饰后,C_β-O键均裂解离能降低,而C_α-C_β键的键解离能升高,C_β-O键裂解概率增大,C_α-C_β键均裂竞争性降低。基于上述四种模型化合物热解的主要芳香族产物有苯甲醇、甲苯、苯甲醛和愈创木酚等,C_α-OH官能团的选择性修饰可调控热解产物种类,其中,氧化修饰后的二聚体的热解产物种类变少,产物选择性增强;甲基化、乙酰化修饰后的二聚体热解可产生苯乙烷和甲苯。  相似文献   

2.
过氧烷基自由基分子内氢迁移是低温燃烧反应中的一类重要基元反应. 本文用等键反应方法计算了该类反应的动力学参数. 所有反应物、过渡态、产物的几何结构均在B3LYP/6-311+G(d,p)水平下优化得到. 本文提出了用过渡态反应中心几何结构守恒作为反应类判据, 并将该分子内氢迁移反应分为四类, 包括(1,3)、(1,4)、(1,5)、(1,n) (n=6, 7, 8)氢迁移类. 分别将这4 类反应类中最小反应体系作为类反应的主反应, 并分别在B3LYP/6-311+G(d,p)低水平和CBS-QB3 高水平下得到其近似能垒和精确能垒. 其余氢迁移反应作为目标反应, 在B3LYP/6-311+G(d,p)低水下计算得到其近似能垒, 再采用等键反应方法校正得到目标反应的精确反应势垒和精确速率常数. 研究表明, 采用等键反应方法只需在低水平用从头算计算就可以得到大分子反应体系的高精度能垒和速率常数值, 且本文按等键反应本质的分类方法更能揭示反应类的本质, 并对反应类的定义给出了客观标准. 本文的研究为碳氢化合物低温燃烧模拟中重要的过氧烷基分子内氢迁移反应提供了准确的动力学参数.  相似文献   

3.
氢过氧自由基从烷烃分子中提取氢的反应是碳氢燃料中低温燃烧化学中非常重要的一类反应。本文用等键反应方法计算了这一类反应的动力学参数。所有反应物、过渡态、产物的几何结构均在HF/6-31+G(d)水平下优化得到。以反应中的过渡态反应中心的几何结构守恒为判据,该反应类可用等键反应处理。本文选取了乙烷和氢过氧自由基的氢提取反应为参考反应,其它反应作为目标反应,用等键反应方法对目标反应在HF/6-31+G(d)水平的近似能垒和反应速率常数进行了校正。为了验证方法的可靠性,选取C5以下的烷烃分子体系,对等键反应方法校正结果和高精度CCSD(T)/CBS直接计算结果进行了比较,最大绝对误差为5.58k J?mol~(-1),因此,采用等键反应方法只需用低水平HF从头算方法就可以再现高精度CCSD(T)/CBS计算结果,从而解决了该反应类中大分子体系的能垒的精确计算。本文的研究为碳氢化合物中低温燃烧模拟中重要的烷烃与氢过氧自由基氢提取反应提供了准确的动力学参数。  相似文献   

4.
本文在CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(3d,2p)水平上构建了HO_2与HONO及其异构体的反应势能剖面,并对各通道的速率常数进行了计算。结果表明,HONO存在cis-HONO、trans-HONO、HNO_2三种不同的异构体,其中HNO_2是最稳定的构型。HNO_2+HO_2反应(R3)能垒比其他两个反应(R1(cisHONO+HO_2)和R2(trans-HONO+HO_2))的能垒降低了8. 2~13. 8 kcal·mol~(-1)。采用传统过渡态理论结合Wigner校正对各反应在240~425 K范围内的速率常数进行了计算。结果表明,反应R3的速率常数比R1和R2的对应值大4~9个数量级,表明HO_2+HONO及其异构体的抽氢反应的速率主要取决于HNO_2+HO_2反应。  相似文献   

5.
在aug-cc-pVTZ基组下采用CCSD(T)和B3LYP方法,研究了H2O2+Cl反应,并考虑在大气中单个水分子对该反应的影响.结果表明,H2O2+Cl反应只存在一条生成产物为HO2+HCl的通道,其表观活化能为10.21kJ·mol-1.加入一分子水后,H2O2+Cl反应的产物并没有发生改变,但是所得势能面却比裸反应复杂得多,经历了RW1、RW2和RW3三条通道.水分子在通道RW1和RW2中对产物生成能垒的降低起显著的负催化作用,而在通道RW3中则起明显的正催化作用.利用经典过渡态理论(TST)并结合Wigner矫正模型计算了216.7-298.2 K温度范围内标题反应的速率常数.结果显示,298.2 K时通道R1的速率常数为1.60×10-13cm3·molecule-1·s-1,与所测实验值非常接近.此外,尽管通道RW3的速率常数kRW3比对应裸反应的速率常数kR1大了46.6-131倍,但该通道的有效速率常数k'RW3却比kR1小了10-14个数量级,表明在实际大气环境中水分子对H2O2+Cl反应几乎没有影响.  相似文献   

6.
采用量子化学方法研究了十氢化萘低温燃烧的动力学机理,获得了脱氢反应、自由基加氧反应及1,5氢迁移反应等反应的动力学参数,并在CBS-QB3水平下获得了相关物种的热力学参数,通过过渡态理论计算获得了具有紧致过渡态反应的高压极限速率常数,而无能垒反应的速率常数则由变分过渡态理论得到.基于此机理分析了十氢化萘低温反应的动力学规律和热力学机制.相比于链烷烃和单环烷烃,十氢化萘自由基加氧反应的速率常数随温度变化较快,1,5-氢迁移反应的能垒较高,揭示了物质结构对反应动力学的影响.热力学平衡常数分析结果表明,在低温下十氢化萘自由基加氧反应起主导作用.通过拟合获得了所有反应Arrhenius形式的速率常数,这些参数可用于双环烷烃低温燃烧机理的构建和优化.  相似文献   

7.
采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了Criegee中间体CH_3CHOO与OH自由基反应的微观机理.结果表明,上述反应存在抽氢、加成-分解和氧化3类反应通道,其中,syn-CH3CHOO+OH以抽β-H为优势通道,表观活化能为-4.88 k J/mol;anti-CH_3CHOO+OH则以加成-分解反应为优势通道,表观活化能为-13.25 k J/mol.在加成-分解和氧化反应通道中,anti-构象的能垒均低于syn-构象,而抽氢反应则是syn-(β-H)的能垒低于anti-构象.速率常数计算表明,anti-构象的加成-分解反应通道具有显著的负温度效应;syn-和anti-构象的氧化通道具有显著的正温度效应.3类反应具有显著不同的温度效应,说明通过改变温度可显著调节3类反应的相对速率.  相似文献   

8.
我们用Fe_2(SO_4)_3·xH_2O为催化剂,对2-甲基-2-已醇脱水生成烯烃反应的溶剂化能力及其动力学做了研究,测定了20种不同溶剂中的反应速率常数和以丙至辛6种直链醇为溶剂于不同温度下反应的速率常数,确定了溶剂化能力与溶剂介电常数之间的线性关系。这方面工作尚未见报道。  相似文献   

9.
本文报道烷基膦酸-O, O-1,3-丙二酯及O, O-1,4-丁二酯于50%二甲亚砜水溶液中的水解动力学, 考察了取代基结构对膦酸酯水解速率常数的影响。通过它们在50%的二甲亚砜水溶液和50%的二氧六环水溶液中碱性水解速率常数的比较, 说明在这些混合溶液中, 烷基的空间结构对水解速率常数的影响是近似平行的。同时, 正丙基膦酸-O, O-1,3-丙二酯于不同混合溶剂中碱性水解时, 溶剂分子的给质子接受质子的能力对水解反应过程有重要影响。  相似文献   

10.
刘艳  任宏江  刘亚强  王渭娜 《化学学报》2009,67(22):2541-2548
采用量子化学QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)方法研究了H2FCS单分子分解反应的微观动力学性质, 构建了反应势能剖面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明, H2FCS可经过不同的反应通道生成10种小分子产物, 脱H反应和HF消去反应为标题反应的主反应通道, 其中HF消去反应产物HCS可由两条反应通道生成. 在200~3000 K温度区间内得到三条反应通道的表观反应速率常数三参数表达式分别为 , 和 . 速率常数计算结果显示, 量子力学隧道效应在低温区间对反应速率常数的影响显著, 而变分效应在计算温度范围内可以忽略.  相似文献   

11.
在B3LYP/6-311++G(2df,p)水平下对单分子水参与下的CH_2SH+NO_2反应的微观机理进行了研究.为了获得更准确的能量信息,采用HL复合方法和CCSD(T)/aug-ccpvtz方法进行单点能校正.结果表明,加入单分子水后的CH_2SH+NO_2反应体系,共经过10条不同的反应路径,得到6种反应产物.与裸反应(CH_2SH+NO_2)相比,水分子在反应中起到了明显的正催化作用.不仅使生成产物trans-HONO的能垒(-52.84kJ·mol~(-1))降低了176.94kJ·mol~(-1),而且不需经过复杂的重排和异构化过程便可得到产物cis-HONO.在生成产物cis-HONO通道(Path3和Path4)中,活化能垒分别为143.65和126.70kJ·mol~(-1),而其裸反应的活化能垒却高达238.34kJ·mol~(-1).生成HNO_2的通道中(Path5和Path6)活化能垒分别为295.23和-42.19kJ·mol~(-1).其中Path6的无势垒过程使HNO_2也成为该反应的主要产物.另外,单分子水还可通过氢迁移的方式直接参与CH_2SH+NO_2的反应,活化能垒(TS7-TS10)分别为-10.62,151.03,186.22和155.10kJ·mol~(-1).除直接抽氢通道中的(Path8-Path10)外,其余反应通道均为放热反应,在热力学上是可行的.  相似文献   

12.
林华宽  夏海涛  贤景春  陈荣悌 《化学学报》1994,52(12):1182-1187
本文采用温度跃迁装置.即T-jump方法研究了钴(Ⅱ)-5-取代邻菲咯啉-α-氨基酸生成三元配合物的动力学性质.测定了该三元体系在25.0±0.1℃. 离子强度为0.1mol.dm^-^3(KNO~3)水溶液中的反应速率常数.结果表明反应速率常数与5- 取代邻菲咯啉的质子化常数之间存在着直线自由能关系. 讨论了具有不同取代基配体的电子效应对反应速率的影响.以及d-p反馈π键的强弱与该三元体系反应速控步骤速率常数之间的关系.  相似文献   

13.
用量子化学密度泛函理论的UB3LYP/6-311 G鄢鄢方法和高级电子相关的UQCISD(T)/6-311 G鄢鄢方法研究了异硫氰酸(HNCS)与乙炔基自由基(C2H(X2Π))反应的微观机理.采用双水平直接动力学方法IVTST-M,获取反应的势能面信息,应用正则变分过渡态理论并考虑小曲率隧道效应,计算了在250~2500K温度范围内反应的速率常数.研究结果表明,HNCS与C2H(X2Π)反应为多通道、多步骤的复杂反应,共存在三个可能的反应通道,主反应通道为通过分子间H原子迁移,生成主要产物NCS C2H2.反应速率常数随温度升高而增大,表现为正温度效应.速率常数计算中变分效果很小.在低温区隧道效应对反应速率的贡献较大,反应为放热反应.  相似文献   

14.
用核磁共振氢谱和红外光潜跟踪了大庆澄清油芳烃组份在液相炭化早期阶段的结构转变。结果表明,多环芳烃分子在热解初期首先脱去环烷上的氢转成芳环,同时发生烷基侧链C_α—C_β键的断裂,形成HS(正己烷可溶)组份。HS组份进一步反应,经烷基链C_α—C_β键断裂而诱发芳核缩合反应,生成更大的芳核分子,并随反应的深入进行,依次生成TS(正己烷不溶甲苯可溶)、PS(甲苯不溶吡啶可溶)及PI(吡啶不溶)等组份。在HS组份部分地转为TS、PS、PI的同时,自身也进一步发生烷基链的断裂。从而在反应中后期形成的TS、PS、PI也表现出烷基侧链的减少。与此同时,PI在生成和积累过程中,发生了脱氢缩合而成更多环数的中间相组份分子,这可从红外光谱1600cm~(-1)峰强逐渐下降证明。  相似文献   

15.
采用CBS-QB3方法对二硝酰胺酸(HDN)裂解过程中的HNNO2自由基自身氢迁移及N—N键断裂异构化反应机理进行了研究.结果表明,HNNO2自由基自身氢迁移反应经历了N(4)—O(2)间的氢迁移、O(2)—O(3)间的氢迁移及内转化3个不同类型的基元反应,最终生成N2O分子与OH自由基.其中N(4)—O(2)间的氢迁移为HNNO2自由基自身氢迁移反应中的速率决定步.HNNO2自由基通过N(1)—N(4)键断裂以及O(2)—N(4)键形成异构化成产物NO+HNO,该过程的能垒为176.17kJ·mol-1,比氢迁移通道决速步能垒高出了47.59kJ·mol-1,表明氢迁移通道为HNNO2裂解过程中的优势通道.  相似文献   

16.
利用双水平直接动力学方法对反应CH3SH+H的微观机理和动力学性质进行了理论研究.对于此反应的三个反应通道,即—SH和—CH3基团上的两个氢提取通道及一个取代通道,在MP2/6-311+G(d,p)水平上优化得到了各稳定点的结构及振动频率,并在G3(MP2)水平上进行了单点能量计算以获得更精确的能量信息;在此基础上运用结合小曲率隧道效应校正的变分过渡态理论(CVT/SCT)计算了各反应通道在220-1000 K温度区间的速率常数.计算结果表明提取—SH基团上H的反应通道R1在整个反应温度区间都是主要通道,而随着温度的升高,低温下的次要反应通道——取代通道R3变得越来越重要,并且在高温下将成为一个竞争的反应通道;提取—CH3基团上H的反应通道(R2)由于具有较高的反应能垒,因而,其对总反应速率常数的贡献可以忽略.计算得到的总反应速率常数与已有的实验值符合得很好,进而我们预测了该反应在220-1000 K温度范围内速率常数的表达式为:k=5.00×10-18T2.39exp(-119.81/T),为将来的实验研究提供参考.  相似文献   

17.
 利用转篮式无梯度反应器,在工业Fe-Mn催化剂上,在较宽的工业操作相关的反应条件下进行了F-T合成反应动力学研究. 首次提出了利用转篮式无梯度反应器反应气氛和反应温度均一的优势,将烃生成反应动力学的估算从传统的对烃生成和水煤气变换这两类发生在不同活性中心的反应同时进行估算的方法中分离出来,简化了烃生成动力学模型的计算. 在基于亚甲基插入的亚烷基机理动力学模型基础上,考虑到乙烯与催化剂表面强的相互作用,将乙烯和乙烷的生成动力学参数单独计算. 动力学模型计算的链增长、烷烃和烯烃生成的活化能均与文献报道值具有较好的一致性. 由F-T合成动力学模型计算的合成气消耗速率、甲烷生成速率和C5+的生成速率较好地与实验值吻合. 通过动力学模型并结合实验结果分析发现,未考虑除化学反应之外的非本征因素的烯烃再吸附动力学模型不能够正确预测烃产物分布偏离ASF规律及烯烷比随碳数增加而下降的现象.  相似文献   

18.
采用unity bond index-quadratic exponential potential(UBI-QEP)方法, 以Co(0001) 单晶为模型催化剂, 对Fischer-Tropsch(F-T)合成的三种可能反应机理(表面碳化物机理、烯醇机理和CO插入机理)进行了全面的能学分析. 计算结果表明, 通过表面碳化物机理生成烃类产物从能学角度看较为合理, 其中COads表面解离和Cads加氢具有较高的活化能垒, 可能是整个F-T反应序列中的慢步骤; 通过CH2,ads插入金属-烷基键实现链增长的活化能垒最低, 是能量上有利的链增长方式; 在Co(0001)晶面上烷基经β-H消除生成烯烃的活化能垒低于加氢生成烷烃, 而通过CO插入机理生成的有机含氧化合物的二次反应能垒较低, 从而导致其在Co催化剂上的低选择性. 此外, 与Fe/W(110)相比, Co金属上的CHx,ads加氢以及CH2,ads插入的活化能垒较低, 从而解释了Co催化剂上甲烷选择性较高和倾向于生成重质烃类产物的特性.  相似文献   

19.
应用量子化学密度泛函理论(DFT),在B3LYP/cc-pVDZ基组水平上,对N-(4-脱氢苯基)吡啶离子与不同结构的氮氧自由基反应进行了热动力学研究.优化了反应通道上反应物、中间体、过渡态和产物的几何构型并计算出它们的零点振动能( Ezpv)和焓值,分析数据研究位阻效应对反应的影响.研究表明3类氮氧自由基均与N-(4-脱氢苯基)吡啶离子自由基反应经过1个无位垒的放热过程生成1个中间体,然后发生自由基的重排,开环的氮氧自由基DTBN相较于闭合的氮氧自由基TMIO和TEMPO化学性质活泼、反应过程复杂.表明反应物本身的位阻效应为此类自由基反应的主要影响因素.  相似文献   

20.
在烯烃的共二聚反应中,丙烯与己烯的共二聚反应在文献中报道得很少.Gaillard用辛酸镍和二氯乙基铝为催化剂,将丙烯二聚生成的己烯再与丙烯反应得到壬烯和十二碳烯.但是,众所周知,在催化剂中使用氯代烷基铝时所得到的都是以支键烃为主的二聚和共二聚产物.为了获得高线性率的C_9和C_(12)烯烃,我们用戊二酮镍和有机铝化合物为催化剂对丙烯和1-己烯的共二聚反应进行了系统的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号