首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文以鸡蛋壳为原料,采用凝胶-溶胶法合成碳羟基磷灰石(CHAP)并以羟基磷灰石(HAP)为对照,探讨了CHAP对水中镉(Cd~(2+))的吸附去除特性。结果表明:(1)鸡蛋壳和磷盐在75℃下反应成功合成CHAP,通过FTIR分析,合成CHAP结构具有HAP的结构特征,且掺杂了CO_3~(2-)(2)CHAP对Cd~(2+)的吸附符合Langmuir和Freundlich等温式,饱和吸附量为44.44 mg·g~(-1),高于HAP对Cd~(2+)的饱和吸附量(29.93 mg·g~(-1))48%。(3)CHAP对Cd~(2+)的吸附符合准二阶动力学方程,在60 min时吸附量达到最大值并趋于平衡。(4)当反应p H为6,温度为35℃,吸附剂用量为1.5 g·L~(-1)时,CHAP对Cd~(2+)的去除效率最佳。综上,凝胶-溶胶法合成的CHAP对水体Cd~(2+)去除效果好,成本低,可作为去除水中Cd~(2+)的低成本吸附剂,既节约资源又保护环境。  相似文献   

2.
碳羟基磷灰石除废水中铬(Ⅵ)吸附动力学和热力学研究   总被引:6,自引:2,他引:4  
利用废弃蛋壳合成碳羟基磷灰石(CHAP)对含铬(Ⅵ)离子废水进行吸附实验研究,考查了溶液的pH值、吸附时间和温度对吸附平衡的影响,并探讨了吸附动力学和热力学行为.结果表明:常温下,吸附时间为30min、pH=3.0、5g/L CHAP对50mg/L的铬(Ⅵ)离子的吸附率达到98.3%以上,CHAP对铬(Ⅵ)离子的吸附机理符合Langmuir和Freundlich方程;准二级动力学模型比准一级动力学模型能更好地描述CHAP对含铬(Ⅵ)离子吸附动力学行为;不同温度下的吸附热力学的吉布斯自由能以及熵变和焓变显示该吸附过程为自发吸热反应.  相似文献   

3.
利用原位共沉淀法合成了羟基磷灰石/壳聚糖复合吸附剂,通过扫描电镜、X射线粉末衍射、红外光谱和N2吸附-脱附曲线,研究复合前后羟基磷灰石的理化特征变化。实验结果表明与壳聚糖复合后羟基磷灰石的晶型并没有改变,只是结晶度有所降低,且复合后表面形成了不规则的凹凸结构,表面粗糙度增加。比表面积从106.75m2/g增加到127.58m2/g。复合吸附剂孔径大部分集中在10~50nm,属于介孔结构。利用Langmuir和Freundlich吸附等温方程对实验数据进行了拟合,对比相关系数R2值,Langmuir模型能更好地描述该吸附过程。复合吸附剂对氟离子的吸附符合拟二级反应动力学方程。计算了吸附热力学和动力学参数值,探讨了复合吸附剂对氟离子的吸附机理。ΔG0<0、ΔH0>0和ΔS0>0,说明复合吸附剂对氟离子的吸附是自发的、吸热的熵增过程,温度升高有利于吸附。吸附活化能(Ea)=15.03kJ·mol-1,迁移能(E)=7.639kJ·mol-1,说明该吸附过程以物理吸附为主。  相似文献   

4.
利用二茂铁制备磁性碳基材料(Fe_3O_4@C),通过壳聚糖(CS)功能化,制备CS改性Fe_3O_4@C复合吸附材料(Fe_3O_4@C-CS)。利用红外光谱(FTIR)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重分析(TGA)和X射线光电子能谱(XPS)等对Fe_3O_4@C-CS表征分析,并通过改变浓度、温度、时间、pH和阳离子等条件系统研究对水中已配位的三价铬(Cr(Ⅲ)-EDTA)的吸附性能。结果表明Fe_3O_4@C已经成功被CS功能化,在pH=4.0、反应温度25℃、投加量0.4 g·L~(-1)时,吸附等温线符合Langmuir模型,理论最大吸附量为12.63 mg·g~(-1),吸附动力学符合拟二级动力学模型,吸附行为是自发进行的吸热过程。结合吸附实验结果和XPS表征分析,静电吸附和配位作用是Fe_3O_4@C-CS吸附剂去除水中Cr(Ⅲ)-EDTA的主要机制。4次吸附-脱附循环后,Fe_3O_4@C-CS对水中Cr(Ⅲ)-EDTA仍具有较高的吸附效率。  相似文献   

5.
以发电废弃物稻壳灰为原料,以NaOH为活化剂制备了稻壳灰吸附剂,并将其用于去除水中罗丹明B(Rhodamine B,Rh B)染料。系统考察了溶液pH值、初始浓度、吸附时间、吸附温度以及溶液离子强度对其吸附性能的影响。结果表明:pH=3时,稻壳灰吸附剂对水中Rh B的吸附效果最佳,饱和吸附容量q_m为322. 6mg·g~(-1);吸附热力学研究表明,吸附过程符合Langmuir等温吸附模型。吸附过程焓变ΔH为7. 67 kJ·mol~(-1),ΔS为24. 92 J·mol~(-1)·K~(-1),ΔG0,表明稻壳灰吸附剂对Rh B的吸附过程是自发的吸热熵增过程;吸附过程可在20 min内达到平衡,符合准二级动力学模型;吸附过程的活化能E_a为24. 1 kJ·mol~(-1)。吸附容量随着溶液离子强度的增大而减小,说明其吸附是以静电作用为主的吸附过程。10次循环使用后稻壳灰吸附剂对Rh B的吸附效率仍能保持91%以上,表明该材料可以多次循环使用,是潜在的高效吸附材料。  相似文献   

6.
为了提高吸附剂对水中孔雀石绿(MG)的去除效果,对埃洛石纳米管改性,制备了氨基功能化的埃洛石纳米管。将该材料用于水中MG的吸附,研究了溶液pH值、温度、吸附时间等因素对MG去除率的影响,考察了吸附机理、吸附选择性和吸附剂的循环使用性能。结果表明,在pH为4~10范围内材料对MG有较好的吸附性能,吸附量随温度的增加而增大;在最佳条件下,材料可去除水中浓度低至0.01 mg·L~(-1)的MG,最大吸附量高达48.40 mg·g~(-1),比改性前提高了101.73%;吸附过程主要是静电吸附,可通过溶液pH的改变调控吸附选择性,吸附剂可再生重复使用。将该方法用于5种实际水样中MG的吸附,去除率在97.14~99.04%之间。  相似文献   

7.
唐文清 《应用化学》2009,26(7):807-810
利用废弃蛋壳为原料、尿素为添加剂,合成不同Ca/P比的碳羟基磷灰石(CHAP)用于吸附水中Cu2+,利用红外光谱、扫描电镜、能谱对CHAP样品表面化学进行了表征,考察了环境因子pH值、温度对CHAP吸附Cu2+的影响。结果表明:通过改变尿素用量可以增加CHAP的Ca/P,提高其比表面积,Ca/P越高的CHAP,吸附能力越强。在pH为7、温度40℃、反应时间为60min时, Ca/P为1.80的CHAP,其对Cu2+吸附量高达到37.66mg/g。随着CHAP的Ca/P比增大,CHAP对Cu2+吸附的固相-水分配系数也增大,对吸附量增大很有利。  相似文献   

8.
不同Ca/P摩尔比碳羟基磷灰石对Cu2+的吸附特性   总被引:1,自引:0,他引:1  
利用废弃蛋壳为原料、尿素为添加剂,合成不同Ca/P摩尔比的碳羟基磷灰石(CHAP)用于吸附水中Cu2+,利用红外光谱、扫描电子显微镜、X射线能谱测试技术对CHAP样品表面化学进行了表征,考察了环境因子pH值、温度对CHAP吸附Cu2+的影响. 结果表明,通过改变尿素用量可以增加CHAP的Ca/P,提高其比表面积,Ca/P越高的CHAP,吸附能力越强. Ca/P为1.80的CHAP,在pH=7、温度40 ℃、反应时间为60 min时,其对Cu2+吸附量高达37.66 mg/g. 随着CHAP的Ca/P比增大,CHAP对Cu2+吸附的固相-水相分配系数也增大,对吸附量增大很有利.  相似文献   

9.
以玉米芯为原料,经离子液体预处理制备磁性玉米芯吸附材料,并探讨该吸附剂对染料刚果红的吸附性能。分别用4种动力学经验方程和4种热力学模型对吸该吸附过程进行分析。拟合结果表明,吸附过程符合二级动力学方程,Langmuir等温吸附模型能够较好地描述磁性玉米芯对刚果红吸附的热力学过程。此外,较高温度有利于吸附,吸附过程为吸热过程。  相似文献   

10.
以富含羧基的反应单体合成了比表面积大、溶剂和热稳定性好的羧基微孔有机网络材料MON-2COOH,开展了其用于快速吸附和去除水中苯并三唑类污染物的研究。通过固体核磁碳谱、N2吸附-解吸、傅里叶变换红外光谱、热重分析、扫描电镜和水接触角实验对所合成的MON-2COOH进行了表征。考察了MON-2COOH吸附1H-苯并三唑(BTri)和5-甲苯基三唑(5-TTri)的吸附等温线、吸附动力学和热力学,以及离子强度、p H值和腐殖酸等对吸附的影响。BTri和5-TTri在MON-2COOH上的吸附符合准二级和Langmuir吸附模型。MON-2COOH在10 min内即可实现对BTri和5-TTri(100 mg·L-1)的吸附平衡,最大吸附量分别为251.3、369.0 mg·g-1,优于文献报道的大多吸附剂。MON-2COOH还具有良好的可重复使用性和再生性,并成功用于实际水样中BTri和5-TTri的吸附和去除。机理研究表明π-π、疏水和氢键相互作用在吸附过程中起重要作用。该文为设计和合成高效去除苯并三唑类污染物的吸附剂提供...  相似文献   

11.
采用改进的Hummers法制备了氧化石墨烯,用水热法首次制备了Fe_3O_4/GO/PPy(聚吡咯)三元复合粒子用于处理含2-硝基-1,3-苯二酚(NRC)的废水,研究了其对水中NRC的吸附性能。采用紫外-可见吸收光谱(UV-Vis)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计及ζ电位等对所制备复合粒子的结构进行了表征;研究了溶液pH值、吸附剂用量、NRC的初始浓度、吸附时间和温度对吸附NRC的吸附性能的影响,并对吸附过程进行了吸附动力学模拟。结果表明:制备的Fe_3O_4/GO/PPy复合材料为层状分散结构,PPy及Fe_3O_4颗粒无规则地镶嵌在石墨烯片层之间。Fe_3O_4颗粒为多面体晶体结构,尺寸为100~300 nm。Fe_3O_4/GO/PPy具有超顺磁性,40 s可以磁分离,NRC移除率达91.6%;在NRC浓度为200 mg·L~(-1)、pH=5±0.05、温度T=318 K、吸附剂用量10 mg·L~(-1)和吸附时间6 h的条件下Fe_3O_4/GO/PPy对NRC的吸附量最大,达到163.3mg·g~(-1)。NRC吸附动力学符合二级动力学模型,吸附等温线符合Langmuir模型。循环使用5次后,NRC的移除率由最初的91.6%下降至77.6%,说明Fe_3O_4/GO/Ppy磁性复合物的结构具有较好的稳定性,且可以再重复利用。  相似文献   

12.
采用氧氯化锆、壳聚糖和人造沸石作为原料制备复合吸附剂,用于水中F-的吸附去除。通过吸附实验研究了在不同浓度、温度和接触时间下新型吸附剂对F~-的吸附特征。吸附动力学过程用准一级、准二级及颗粒扩散、颗粒内扩散模型进行分析,结果发现F-在复合吸附剂上的吸附同时符合准一级动力学和准二级动力学模型;颗粒扩散和颗粒内扩散均参与控制吸附过程。分别用Freundlich、Langmuir方程对吸附等温线进行拟合,结果表明,F-在锆改性壳聚糖-沸石上的吸附等温线拟合结果均较好,常温下最大吸附量为10.75mg/g,推测该吸附为化学吸附;吸附热力学参数说明F-在复合吸附剂上的吸附为自发、吸热、熵增过程。机理研究表明,载锆壳聚糖-沸石复合吸附剂的除氟机制为吸附和离子交换。  相似文献   

13.
以赤泥为原料,十二烷基苯磺酸钠为活化剂,制备出活化赤泥吸附剂,并对亚甲基蓝(MB)染料废水吸附性能进行研究。结果表明,活化赤泥对亚甲基蓝的吸附效果有一定提高。振荡时间15min,活化赤泥6g·L~(-1),中性条件下,对40mg·L~(-1)亚甲基蓝吸附率可达90%。吸附符合Langmuir和Freundlich吸附等式,最大吸附量为16.37mg·g~(-1)。活化赤泥吸附亚甲基蓝为放热反应,低温利于亚甲基蓝吸附。  相似文献   

14.
从深海表层沉积物中筛选获得具有吸附钍功能的菌株WHY-2,通过16S r DNA序列分析,初步将WHY-2鉴定为蜡样芽孢杆菌(Bacillus cereus)。通过批量吸附实验研究了该菌株对水溶液中Th(IV)的吸附特性,并对其吸附动力学和吸附等温线模型进行了研究。结果表明,当pH为4,Th(Ⅳ)初始浓度为50 mg·L~(-1),吸附剂投加量为0. 6 g·L~(-1),吸附时间为10 h时,Th(IV)的去除率为96. 95%,吸附量为82. 46mg·g~(-1)。菌株WHY-2对Th(Ⅳ)的吸附动力学过程符合准二级动力学模型,Freundlich模型能更好地拟合等温吸附过程。在吸附过程中,氨基、羰基、羟基、甲基、亚甲基以及磷酸基等基团是起主要作用的官能团。经过6次的吸附-解吸再生实验,去除率仍能达到83. 36%。  相似文献   

15.
荞麦皮生物吸附去除水中Cr(Ⅵ)的吸附特性和机理   总被引:6,自引:0,他引:6  
农业废弃物荞麦皮作为生物吸附剂去除水中Cr(Ⅵ),研究了荞麦皮对Cr(Ⅵ)的去除动力学以及溶液pH、吸附剂用量和Cr(Ⅵ)初始浓度对去除效率的影响;通过FT-IR,XPS,SEM-EDX对荞麦皮表面组成和结构进行表征,探索荞麦皮去除Cr(Ⅵ)的机理.结果显示:荞麦皮对Cr(Ⅵ)有很高的去除效率.常温下5.0 g·L-1的荞麦皮在pH=2.0下对100 mg·L-1 Cr(Ⅵ)溶液的去除率可达99.87%.荞麦皮对Cr(Ⅵ)的去除率随溶液pH降低而升高,在pH=2.0时达到最大;随吸附剂用量增加而增大;随Cr(Ⅵ)初始浓度增加而减小.单位质量荞麦皮对Cr(Ⅵ)的去除量随吸附剂用量增加而减小;随Cr(Ⅵ)初始浓度增加而增加,最后趋于稳定.在20℃,pH=2.0,吸附用量为5.0 g·L-1时,荞麦皮对Cr(Ⅵ)的最大去除容量约为36.4 mg·g-1.荞麦皮吸附去除Cr(Ⅵ)的过程符合准二级吸附动力学.FT-IR,XPS和SEM-EDX分析结果表明:荞麦皮是一个多孔材料,表面存在羧基、氨基、羟基等活性基团;荞麦皮对Cr(Ⅵ)的去除是一个吸附-还原耦合的过程,包括Cr(Ⅵ)在荞麦皮表面上的静电吸附,以及此后的固相还原和对还原态的Cr(Ⅲ)再吸附;Cr(Ⅲ)的吸附主要是通过与荞麦皮表面的羧基、氨基的配位,以及与其中的阳离子发生离子交换作用实现的.  相似文献   

16.
以炭化玉米秸秆(CCS)为吸附剂去除水中Pb(Ⅱ),研究反应过程的动力学特性和等温线方程,考察溶液pH值和反应温度对Pb(Ⅱ)去除的影响,分析CCS的解吸行为。结果表明:吸附过程更好地符合准二级动力学方程和Langmuir等温线方程,拟合系数R2分别为0.9972和0.9959;由Langmuir方程计算可知,CCS对Pb(Ⅱ)的理论最大吸附量qm为30.3030mg/g。反应过程自发、吸热,反应后体系自由度略有增加。Pb(Ⅱ)去除的最适pH值为6,对于浓度为40mg/L、体积为100mL的Pb(Ⅱ)溶液,使用0.1g CCS能去除水中63.53%的Pb(Ⅱ)。反应温度对Pb(Ⅱ)去除效果的影响很小。蒸馏水和HCl都能实现Pb(Ⅱ)的有效解吸,再生后的CCS对Pb(Ⅱ)仍能取得15.69mg/g的二次吸附量。  相似文献   

17.
水的氟污染是全世界普遍存在的问题,因此受到了人们的极大关注。我们研究重点是使用活性氧化铝及再生后的活性氧化铝脱除水中的氟离子。为了得到合适的吸附剂,我们将工业薄水铝石在573 K至1473 K范围内进行煅烧,并对其进行表征。从X射线衍射图中可以看出,当煅烧温度在773 K至1473 K之间时,样品转化为γ-氧化铝(活性氧化铝)。且BET数据显示,当煅烧温度在773K至1473K之间时,样品的比表面积逐渐降低。在本实验中,我们选用773K、873K、973 K煅烧的活性氧化铝作为除氟吸附剂,同时选用动态吸附法移除水中的氟离子。突破曲线表明吸附容量随着煅烧温度的增加而降低。为了研究氟离子的初始浓度对吸附容量的影响,我们选用15 mg·L~(-1)、20 mg·L~(-1)、25 mg·L~(-1)的氟离子溶液作为初始溶液,且吸附剂的吸附容量随着初始浓度的增加而增加。当活性氧化铝吸附氟离子达到饱和后,用pH值为13.0、13.3和13.5的氢氧化钠溶液对其再生,并用0.1 mol·L~(-1)的盐酸溶液对其进行活化以提高吸附剂的吸附能力。通过比较五次再生过程中的解吸率和铝溶解率,可以看出pH值为13.0的氢氧化钠溶液最适合作解吸剂。通过分析吸附剂的氮气吸-脱附等温线,发现再生后的吸附剂的氮气吸脱附等温线的形状并没有发生很大的变化,说明再生过程中吸附剂的孔结构并没有被破坏。五次再生过程中吸附剂的比表面积和等电点的变化是影响吸附容量很重要的两个因素,发现吸附剂再生后其比表面积和等电点均增加。为检测再生吸附剂的吸附效果,每次再生后都需要进行一次吸附实验。突破曲线表明,和初始活性氧化铝相比,再生后达到饱和所用的时间更短,吸附量越大。为了探究吸附机理,我们用红外光谱表征吸附剂中的羟基,发现再生过程中吸附剂中Al―O―H含量的变化是影响活性氧化铝对氟离子吸附量的关键因素。  相似文献   

18.
为了提高甘蔗渣的吸附量,通过均苯四甲酸二酐(PMDA)改性蔗渣纤维制备PMDA-SCB以提高其吸附回收稀土离子的能力。FTIR和SEM表征分析,蔗渣纤维表面接枝了大量的羧基基团,为吸附目标离子提供大量的活性位点。实验结果表明:pH值对吸附剂吸附效果影响较大,最佳pH值为6。PMDA-SCB对La~(3+),Gd~(3+),Y~(3+)的Langmuir等温吸附量分别为74.85,88.90和43.30 mg·g~(-1),是未改性蔗渣SCB的9.2,9.1和10倍。准二级动力学方程能更好地描述吸附方程,其R2大于0.999。PMDA-SCB经过4次吸附解析循环后,其吸附量降低率比较少,说明PMDA-SCB能有效去除并回收废液中的稀土离子。  相似文献   

19.
以Fe-Al-Mn三金属纳米复合氧化物作为吸附材料研究了去除模拟地下水中氟离子的吸附特性。根据X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线电子能谱(XPS)、比表面积、孔径和红外光谱(FT-IR)等表征结果,探讨了Fe-Al-Mn三金属纳米复合氧化物吸附剂表面形貌、组成和吸附机理,考察了不同p H值和不同温度下对F-去除效果的影响。实验结果表明,Fe-Al-Mn三金属纳米复合氧化物吸附剂对F-吸附的动力学和热力学实验结果分别与准二级动力学模型及Langmuir等温吸附模型相吻合;其吸附速率都随着温度的升高而增加,由Langmuir等温吸附模型拟合得到最大吸附容量从20.54mg/g(293K)增加到28.53mg/g(313K)。根据标准吉布斯自由能变ΔG00、标准反应焓变ΔH00判断,Fe-Al-Mn三金属纳米复合氧化物吸附剂对F-的吸附为自发的吸热过程。  相似文献   

20.
采用共沉淀法合成了谷氨酸插层镁铝类水滑石(LDH),对所制备的试样进行了X-射线衍射和红外光谱表征,对LDH去除水中铅离子的能力进行了讨论,研究了吸附过程的吸附动力学和吸附等温线。结果表明,谷氨酸能嵌入镁铝水滑石的层间,该插层水滑石能有效吸附水中铅离子,吸附过程符合准二级动力学模型,吸附等温曲线可用Langmuir模型来描述,吸附量可达68.49mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号